首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the column density distribution of X-ray binaries in the Galactic Center region using the X-ray satellite ASCA, and demonstrate a new method to determine the mass distribution of the cold interstellar matter near the Galactic Center. The column densities of these X-ray sources are given by a simple function of the angular distance from the Galactic plane. Assuming a disk-like mass distribution of 300 pc radius, we estimate the total cold mass to be ∼7 × 107 M. We compare our results with the past results of other wavelength observations, and discuss physical conditions of the interstellar matter in the Galactic Center region.  相似文献   

2.
We present an analysis of high resolution spectra in the far-UV – UV range (∼905–2000 Å) with non-LTE, spherical, hydrodynamical, line-blanketed models, of three O-type Galactic stars, and derive their photospheric and wind parameters. These data extend previously analyzed samples and fill a gap in spectral type coverage. The combined sample confirms a revised (downward) Teff scale with respect to canonical calibrations, as found in our previous works from UV and optical spectra, and in recent works by other authors.  相似文献   

3.
A small number of early Be stars exhibit X-ray luminosities intermediate between those typical of early type stars and those radiated by Be/X-ray binaries in the quiescent state. We report on XMM-Newton observations of two such Be stars, HD 161103 and SAO 49725 which were originally discovered in a systematic cross-correlation between the ROSAT all-sky survey and SIMBAD. The new observations confirm the X-ray luminosity detected by ROSAT (LX  1032 erg s−1) and the hardness of their X-ray spectra (thin thermal with kT  8–10 keV or power law with photon index of 1.7) which are both unusual for normal early type stars. We discuss the possible origin of this excess X-ray emission in the light of the models proposed for γ-Cas, magnetic disc-star interaction or accretion onto a compact companion object, neutron star or white dwarf, and compare the properties of these two sources with those of the new massive systems discovered in the XMM- Newton/SSC survey of the Galactic plane.  相似文献   

4.
To improve the physical understanding of the Forbush decreases (FD) and to explore the Space Weather drivers, we need to measure as much geospace parameter as possible, including the changing fluxes of secondary cosmic rays. At the Aragats Space Environmental Center (ASEC) are routinely measured the neutral and charged fluxes of secondary cosmic rays. Each of species has different most probable energy of primary “parent” proton/nuclei. Therefore, the energy range of the Galactic Cosmic Rays (GCR) affected by Interplanetary Coronal Mass Ejection (ICME) can be effectively estimated using data of the ASEC monitors. We presented relations of the magnitude of FD observed in different secondary particle fluxes to the most probable energy of the primary protons. We investigate the correlations between the magnitude of FD with the size, speed, density and magnetic field of the ICME. We demonstrate that the attenuation of the GCR flux incident on the Earth’s atmosphere due to passing of the ICME is dependent on the speed and size of the ICME and the magnetic field strength.  相似文献   

5.
We describe the results obtained with Target of Opportunity observations of the galactic sources SGR 1627–41 and 1E 1547–5408. These two transients show several similarities supporting the interpretation of Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters as a single class of strongly magnetized neutron stars.  相似文献   

6.
We present here results obtained from three BeppoSAX observations of the transient X-ray pulsar GRO J1948+32 carried out during the declining phase of its 2000 November–2001 June outburst. Timing analysis of the data clearly shows a 18.7 s pulsation in the X-ray light curves in 0.1–100 keV energy band. The pulse profile of GRO 1948+32 is characterized by a broad peak with a sharp rise followed by a narrow dip. The dip in the pulse profile shows very strong energy dependence. Phase-averaged spectroscopy obtained with three of the BeppoSAX instruments shows that the 0.1–100 keV energy spectrum is described by a Comptonized component, a weak blackbody component (7% of the total emission) for soft X-rays, a narrow and weak iron emission line at 6.7 keV and low column density of material in the line of sight. The results obtained from the analysis are discussed in this paper.  相似文献   

7.
The Galaxy Evolution Explorer (GALEX) has performed the first surveys of the sky in the ultraviolet (UV). Its legacy is an unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects, filling an important gap in our view of the sky across the electromagnetic spectrum. The UV surveys offer unique sensitivity for identifying and studying selected classes of astrophysical objects, both stellar and extra-galactic. We examine the overall content and distribution of UV sources over the sky, and with magnitude and color. For this purpose, we have constructed final catalogs of UV sources with homogeneous quality, eliminating duplicate measurements of the same source. Such catalogs can facilitate a variety of investigations on UV-selected samples, as well as planning of observations with future missions. We describe the criteria used to build the catalogs, their coverage and completeness. We included observations in which both the far-UV and near-UV detectors were exposed; 28,707 fields from the All-Sky Imaging survey (AIS) cover a unique area of 22,080 square degrees (after we restrict the catalogues to the central 1° diameter of the field), with a typical depth of ∼20/21mag (FUV/NUV, in the AB mag system), and 3008 fields from the Medium-depth Imaging Survey (MIS) cover a total of 2251 square degrees at a depth of ∼22.7mag. The catalogs contain ∼71 and ∼16.6 million sources, respectively. The density of hot stars reflects the Galactic structure, and the number counts of both Galactic and extra-galactic sources are modulated by the Milky Way dust extinction, to which the UV data are very sensitive.  相似文献   

8.
We highlight how the downward revision in the distance to the star cluster associated with SGR 1806–20 by Bibby et al. (2008) reconciles the apparent low contamination of BATSE short GRBs by intense flares from extragalactic magnetars without recourse to modifying the frequency of one such flare per 30 years per Milky Way galaxy. We also discuss the variety in progenitor initial masses of magnetars based upon cluster ages, ranging from ∼50 M for SGR 1806–20 and AXP CXOU J164710.2–455216 in Westerlund 1 to ∼17 M for SGR 1900+14 according to Davies et al. (2009) and presumably also 1E 1841–045 if it originated from one of the massive RSG clusters #2 or #3.  相似文献   

9.
We report statistical properties of molecular clouds in the Galactic center region. We identified 65 molecular clumps in the region. We determined the velocity width-radius relation and the virial mass-LTE mass relation for the identified Galactic center clumps. We also determined the mass and size spectra for the Galactic center clumps. We consider whether the Galactic center molecular clumps is bound by the external pressure and/or the magnetic field.  相似文献   

10.
This paper reviews the multi-wavelength properties of two groups of pulsars, the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), that are generally interpreted as isolated neutron stars with strong magnetic fields of 1014–1015 G. Most of these sources have now been observed at different wavelengths, from the radio band to hard X-rays. Several new members of these classes have been discovered in the last few years, due to their transient nature. The distinction between AXPs and SGRs is becoming less evident, as more observations are collected which show similar properties in all these sources.  相似文献   

11.
Radio telescope observations of relativistic phenomena in binary pulsar systems yield straightforward and robust determinations of the masses of pulsars and their companion stars. This paper summarizes masses measured by this means.  相似文献   

12.
The unusual core-collapse supernova 1986J, in the nearby spiral NGC 891, is the first modern supernova in which evidence of a compact remnant of the supernova has been seen. This evidence comes from recent VLBI images, which show the emergence of a new radio component in the center of the expanding radio shell. The new component shows an inverted radio spectrum contrasting with that of the shell. The new component is likely radio emission associated with the black-hole or neutron star compact remnant of the explosion, which would mark the first direct observational link between a modern supernova and such a compact remnant. We report here on our recent VLBI images at 22 and 5 GHz, as well as on our monitoring of the integrated radio spectrum of SN 1986J. In the 22 GHz image, the central component is marginally resolved.  相似文献   

13.
A large number of galaxies, both normal and active, have been observed in ultraviolet light by the Optical Monitor on XMM-Newton. These are some of the deepest wide-field ultraviolet images of these galaxies yet obtained, and in many cases the first collected in this waveband. We present images of five active galaxies, and discuss the potential uses of the ultraviolet surface brightness distribution and morphology, in association with X-ray data, for Active Galactic Nuclei, star formation and galaxy evolution studies.  相似文献   

14.
The transient X-ray pulsar A0535+26 was observed on October 4, 1980 during a high level intensity outburst with a balloon borne hard X-ray detector. High statistical quality source spectra were determined up to 100 keV. Both blackbody and Wien laws fit well the data. Pulse phase spectroscopy shows variation of temperature index between 7.5 and 8.5 keV in the off source spectra and between 7.4 and 10.5 keV in the off pulse spectra. The time averaged luminosity above 30 keV is 8×1036 erg/s.  相似文献   

15.
Millisecond X-ray time variability studies of accreting low-magnetic-field neutron stars and stellar-mass black holes in X-ray binaries probe the motion of matter in regions of strong gravity. In these regions, general relativity (GR) is no longer a small correction to the classical laws of motion, but instead dominates the dynamics: we are studying motion in strongly curved spacetime. Such millisecond X-ray variability studies can therefore provide unique tests of GR in the strong-field regime. The same studies also constrain neutron-star parameters such as stellar mass and radius, and thereby the equation of state (EOS) of ultradense matter. I briefly review the status, and discuss the prospects for mapping out space-time near accreting stellar-mass compact objects, and measuring the EOS of dense matter, through millisecond timing, particularly with an eye towards future missions. The overwhelming consideration for timing sensitivity is collecting area: contrary to most applications, the signal-to-noise ratio for the aperiodic timing phenomena produced by accretion flows increases proportionally with count rate rather than as the square root of it. A 10 times larger instrument turns 1σ effects into 10σ effects (or does as well in 1% of the time). With the Rossi X-ray Timing Explorer (RXTE), using 0.6 m2 collecting area, we have found several timing diagnostics from the accretion flow in the strong field region around neutron stars and black holes, as well as signals from neutron star surface hot spots. Combined work between RXTE and the new sensitive X-ray spectrographs onboard Chandra and XMM can already begin to clinch the geometry and physical mechanisms underlying these signals. Future instruments, larger in area by an order of magnitude and in some cases with enhanced spectral capabilities, are expected to turn these diagnostics of GR into true tests of GR. They are also expected to put strong constraints on neutron-star structure, and thereby on the EOS of supranuclear density matter.  相似文献   

16.
Although rotating neutron stars (NSs) have been regarded as being textbook examples of astrophysical particle acceleration sites for decades, details of the acceleration mechanism remain a mystery; for example, we cannot yet observationally distinguish “polar cap” models from “outer gap” models. To solve the model degeneracy, it is useful to study similar systems with much different physical parameters. Strongly magnetized white dwarfs (WDs) are ideal for this purpose, because they have essentially the same system geometry as NSs, but differ largely from NSs in the system parameters, including the size, magnetic field, and the rotation velocity, with the induced electric field expected to reach 1013–1014 eV. Based on this idea, the best candidate among WDs, AE Aquarii, was observed with the fifth Japaneses X-ray satellite, Suzaku. The hard X-ray detector (HXD) on-board Suzaku has the highest sensitivity in the hard X-ray band over 10 keV. A marginal detection in the hard X-ray band was achieved with the HXD, and was separated from the thermal emission. The flux corresponds to about 0.02% of its spin-down energy. If the signal is real, this observation must be a first case of the detection of non-thermal emission from WDs.  相似文献   

17.
A concept for a new space-based cosmology mission called the Dark Ages Radio Explorer (DARE) is presented in this paper. DARE’s science objectives include: (1) When did the first stars form? (2) When did the first accreting black holes form? (3) When did Reionization begin? (4) What surprises does the end of the Dark Ages hold (e.g., Dark Matter decay)? DARE will use the highly-redshifted hyperfine 21-cm transition from neutral hydrogen to track the formation of the first luminous objects by their impact on the intergalactic medium during the end of the Dark Ages and during Cosmic Dawn (redshifts z = 11–35). It will measure the sky-averaged spin temperature of neutral hydrogen at the unexplored epoch 80–420 million years after the Big Bang, providing the first evidence of the earliest stars and galaxies to illuminate the cosmos and testing our models of galaxy formation. DARE’s approach is to measure the expected spectral features in the sky-averaged, redshifted 21-cm signal over a radio bandpass of 40–120 MHz. DARE orbits the Moon for a mission lifetime of 3 years and takes data above the lunar farside, the only location in the inner solar system proven to be free of human-generated radio frequency interference and any significant ionosphere. The science instrument is composed of a low frequency radiometer, including electrically-short, tapered, bi-conical dipole antennas, a receiver, and a digital spectrometer. The smooth frequency response of the antennas and the differential spectral calibration approach using a Markov Chain Monte Carlo technique will be applied to detect the weak cosmic 21-cm signal in the presence of the intense solar system and Galactic foreground emissions.  相似文献   

18.
The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m2 equal to 10 times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.  相似文献   

19.
Forty years passed since the optical identification of the first isolated neutron star (INS), the Crab pulsar. 25 INSs have been now identified in the optical (O), near-ultraviolet (nUV), or near-infrared (nIR), hereafter UVOIR, including rotation-powered pulsars (RPPs), magnetars, and X-ray-dim INSs (XDINSs), while deep investigations have been carried out for compact central objects (CCOs), Rotating RAdio transients (RRATs), and high-magnetic field radio pulsars (HBRPs). In this review I describe the status of UVOIR observations of INSs, their emission properties, and I present the results from recent observations.  相似文献   

20.
Hard X-ray emitting symbiotic stars are candidates for SN Ia progenitors. The importance of Type Ia SNe as standard candles for cosmology makes the study of their progenitor systems particularly important. Additionally, they provide one of the most promising laboratories for the study of astrophysical jets. Typically, the X-ray emission in these systems is modeled with a collisional plasma model, sometimes with an emission measure distribution taken from a cooling flow model. The lack of any coherent periods in both X-rays and optical wave band strongly suggests that the accreting white dwarfs in the hard X-ray symbiotic stars are non-magnetic. Although relatively few have been discovered to date, but we believe that there are very many of them in our galaxy and could be possible candidates for the Galactic Ridge X-ray Emissions (GRXE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号