首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
SOHO: The Solar and Heliospheric Observatory   总被引:1,自引:0,他引:1  
The Solar and Heliospheric Observatory (SOHO), together with the Cluster mission, constitutes ESA's Solar Terrestrial Science Programme (STSP), the first Cornerstone of the Agency's long-term programme Space Science — Horizon 2000. STSP, which is being developed in a strong collaborative effort with NASA, will allow comprehensive studies to be made of the both the Sun's interior and its outer atmosphere, the acceleration and propagation of the solar wind and its interaction with the Earth. This paper gives a brief overview of one part of STSP, the SOHO mission.  相似文献   

2.
During the first half of 1996, the European Space Agency (ESA) will launch a unique flotilla of spacecraft to study the interaction between the solar wind and the Earth's magnetosphere in unprecedented detail. The Cluster mission was first proposed to the Agency in late 1982 and was selected, together with SOHO, as the Solar Terrestrial Science Programme (STSP), the first cornerstone of ESA's Horizon 2000 Programme. It is a complex four-spacecraft mission designed to carry out three-dimensional measurements of the magnetosphere, covering both large- and small-scale phenomena in the sunward and tail regions. The mission is a first for ESA in a number of ways: – the first time that four identical spacecraft have been launched on a single launch vehicle, – the first time that ESA has built spacecraft in true series production and operated them as a single group, – the first time that European scientific institutes have produced a series of up to five instruments with full intercalibration, and – the first launch of the Agency's new heavy launch vehicle Ariane-5. The article gives an overview of this unique mission and the requirements that governed the spacecraft design. It then describes in detail the resulting design and how the particular engineering challenges posed by the series production of four identical spacecraft and sets of scientific instruments were met by the combined efforts of the ESA Project Team, Industry and the experiment teams.  相似文献   

3.
The space-based Solar and Heliospheric Observatory (SOHO) is a joint venture of ESA and NASA within the frame of the Solar Terrestrial Science Programme (STSP), the first Cornerstone of ESA's long-term programme Space Science — Horizon 2000. The principal scientific objectives of the SOHO mission are: a) a better understanding of the structure and dynamics of the solar interior using techniques of helioseismology, and b) a better insight into the physical processes that form and heat the Sun's corona, maintain it and give rise to its acceleration into the solar wind. To achieve these goals, SOHO carries a payload consisting of 12 sets of complementary instruments which are briefly described here.  相似文献   

4.
The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space probe (Venera 4, 1967). Venus appeared to be the first neighbor planet whose surface had been seen by us in the direct nearness made possible by means of the phototelevision device (Venera 9 and Venera 10, 1975). The reasons for the high interest in this planet are very simple. This planet is like the Earth by its mass, size and amount of energy obtained from the Sun and at the same time it differs sharply by the character of its atmosphere and climate. We hope that the investigations of Venus will lead us to define more precisely the idea of complex physical and physical-chemical processes which rule the evolution of planetary atmospheres. We hope to learn to forecast this evolution and maybe, in the far future, to control it. The last expeditions to Venus carried out in 1978 — American (Pioneer-Venus) and Soviet (Venera 11 and 12) — brought much news and it is interesting to sum up the results just now. The contents of this review are:
  1. The planet Venus — basic astronomical data.
  2. Chemical composition.
  3. Temperature, pressure, density (from 0 to 100 km).
  4. Clouds.
  5. Thermal regime and greenhouse effect.
  6. Dynamics.
  7. Chemical processes.
  8. Upper atmosphere.
  9. Origin and evolution.
  10. Problems for future studies
Here we have attempted to review the data published up to 1979 and partly in 1980. The list of references is not exhaustive. Publications of special issues of magazines and collected articles concerning separate space expeditions became traditional last time. The results obtained on the Soviet space probes Venera 9, 10 (the first publications) are collected in the special issues of Kosmicheskie issledovanija (14, Nos. 5, 6, 1975), analogous material about Venera 11, 12 is given at Pis'ma Astron. Zh. (5, Nos. 1 and 5, 1978), and in Kosmicheskie issledovanija (16, No. 5, 1979). The results of Pioneer-Venus mission are represented in two Science issues (203, No. 4382; 205, No. 4401) and special issue of J. Geophys. Res. (1980). We shall mention some articles to the same topic among previous surveys: (Moroz, 1971; Sagan, 1971; Marov, 1972; Hunten et al., 1977; Hoffman et al., 1977) and also the books by Kuzmin and Marov (1974) and Kondrat'ev (1977). Some useful information in the part of ground-based observations may be found in the older sources (for example, Sharonov, 1965; Moroz, 1967). For briefness we shall use as a rule the abbreviations of space missions names: V4 instead of Venera 4, M10 instead of Mariner 10 and so on. The first artificial satellites of Venus in the world (orbiters Venera 9 and 10) we shall mark as V9-O, V10-O unlike the descent probes V9, V10. Fly-by modules of Venera 11 and Venera 12 we shall mark as V11-F and V12-F. Pioneers descent probes — Large (Sounder), Day, Night and North — will be marked as P-L, P-D, P-Ni, P-No, orbiter as P-O, and bus as P-B.  相似文献   

5.
The requirements of systematic exploration of the outer solar system have been intensively studied by a Science Advisory Group (SAG) of consulting scientists for the National Aeronautics and Space Administration (NASA). Comets and Asteroids were excluded from this study, as a separate group is planning missions to these bodies. This paper and accompanying articles on specific related scientific subjects written by members of the SAG, summarize the findings and recommendations of this group. These recommendations should not be interpreted as official NASA policy. Following some general introductory remarks, a brief sketch is given of the development and current status of scientific missions to the inner planets by the U.S. and the U.S.S.R. With this perspective, the development of the U.S. program for investigation of the outer solar system is described. The scientific focus of outer solar system exploration has been studied in detail. The relationship of the outer planetary bodies to one another and to the inner planets, as parts in a unified solar system evolved from a primitive solar nebula, is emphasized. Deductions from outer solar system investigations regarding the conditions of the solar nebula at the time of planetary formation have been considered. Investigations have been proposed that are relevant to studies of the atmospheric structure and dynamics, internal structure of the planets, satellite composition and morphology, and planetary and interplanetary fields and energetic particles. The mission type and sequence required to conduct a systematic exploration of the outer solar system has been developed. Technological rationales for the suggested missions are discussed in general terms. The existing NASA program for outer solar system exploration is comprised of four missions:
  1. Pioneer 10 fly-by mission to Jupiter and beyond, currently underway, with launch on 3 March 1972;
  2. Pioneer G, intended for a similar mission with planned launch 2–22 April 1973; and
  3. Two Mariner Jupiter/Saturn fly-bys in 1977, with experiment selection scheduled for late 1972 and detailed engineering design during 1972–74.
The Science Advisory Group advocates that detailed mission planning be undertaken on the following additional missions for launches during the late 1970's and early 1980's. Together with existing plans, these would provide a balanced, effective exploration program.
  1. 1976 Pioneer Jupiter/Out-of-Ecliptic (One Mission)
  2. 1979 Mariner Jupiter/Uranus Fly-bys (Two Missions)
  3. 1979 Pioneer Entry Probe to Saturn 1980 Pioneer Entry Probe to Uranus via Saturn Fly-by (Three Missions)
  4. 1981/1982 Mariner Jupiter Orbiter (Two Missions).
  相似文献   

6.
Recent examinations of extraterrestrial materials exposed to cosmic rays for different intervals of time during the geological history of the solar system have generated a wealth of new information on the history of cosmic radiation. This information relates to the temporal variations in
  1. the flux and energy spectrum of low energy (solar) protons of ? 10 MeV kinetic energy;
  2. the flux and energy spectrum of (solar) heavy nuclei of Z > 20 of kinetic energy, 0.5–10 MeV/n;
  3. the integrated flux of protons and heavier nuclei of ? 0.5 GeV kinetic energy, and
  4. the flux and energy spectrum of nuclei of Z > 20 of medium energy — 100–2000 MeV/n kinetic energy.
The above studies are entirely based on the natural detector method which utilises two principal cosmogenic effects observed in rocks, (i) isotopic changes and (ii) changes in the crystalline structure of rock constituents, due to cosmogenic interactions. The information available to date in the field of hard rock cosmic ray archaeology refers to meteorites and lunar rocks/soil. Additional information based on study of cosmogenic effects in man-made materials exposed to cosmic radiation in space is also discussed. It is shown that the natural detectors inspite of their extreme simplicity have begun to provide cosmic ray information in a very quantitative and precise manner comparable to the most sophisticated electronic particle detectors. The single handicap in using the hard rock detectors is however the uncertainty regarding their manner of exposure, geometry etc. At present, a variety of techniques are being used to study the evolutionary history of extraterrestrial materials and as this field grows, uncertainties in cosmic ray archaeology will correspondingly decrease.  相似文献   

7.
Analysis of recent observations (from balloons, spacecraft, and surface observatories) demonstrate regional, shell, and nearpoint conjugacy at L ~ 7 during precipitative events which were characterized by local acceleration as well as release of gradient-drifted electrons injected during substorms. A number of new features of magnetospheric dynamics relating to substorm development and sudden-commencement effects, have been brought to light which, though poorly understood at present, may prove of considerable importance and are worthy of further investigation.
  1. During the initial period of instability in substorm evolution, preceding the slower magnetotail convective injection, precipitation of waves of electrons in rapid polewards motion exhibit L-shell conjugacy near midnight.
  2. Transient, large scale expansions of the magnetospheric electron population accompanied by temporally imbedded substorms display large scale regional conjugacy and are simultaneously observed as similarly transient intensity dropouts at balloon altitudes.
  3. Precipitation from gradient-drifting electrons in the dayside magnetosphere exhibits near point-conjugacy, at least down to the order of 50 km and quite probably less.
Similarly tight conjugacy applies to the release of electrons showing a specific local response to sudden commencements.
  1. Analysis of the approach to and attainment of spectral equilibrium in the precipitation observed from drifting electrons may provide information about either, or both, the source spectrum at injection and the process of local release.
  2. The specific precipitation effect sometimes observed at the time of an SC remains a rather puzzling feature, although it seems clear now that the acceleration and/or release process responsible is of a highly local nature and works selectively at small pitch angles well within the magnetospheric boundary. Coupling of the interplanetary shock with the magnetosphere must be an important aspect, but the details are not clear as yet.
  3. On at least one occasion, a large part (perhaps all) of the magnetospheric electron population varied in a nearly synchronous manner in response to solar wind induced distortions during the variable compressive phase of a sudden commencement geomagnetic storm.
In the ongoing effort to identify and understand acceleration and release mechanisms involved in magnetospheric dynamics, balloon-borne experiments will continue to be useful, providing essential information presently unattainable by other means.  相似文献   

8.
The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10°). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.  相似文献   

9.
The geology of the decade of Apollo and Luna probably will become one of the fundamental turning points in the history of all science. For the first time, the scientists of the Earth have been presented with the opportunity to interpret their home planet through the direct investigations of another. Mankind can be proud and take heart in this fact. The interpretive evolution of the Moon can be divided now into seven major stages beginning sometime near the end of the formation of the solar system. These stages and their approximate durations in time are as follows:
  1. The Beginning — 4.6 billion years ago.
  2. The Melted Shell — 4.6–4.4 billion years ago.
  3. The Cratered Highlands — 4.4–4.1 billion years ago.
  4. The Large Basins — 4.1–3.9 billion years ago.
  5. The Light-colored Plains — 3.9–3.8 billion years ago.
  6. The Basaltic Maria — 3.8–3.0 (?) billion years ago.
  7. The Quiet Crust — 3.0 (?) billion years ago to the present.
The Apollo and Luna explorations that permit us to study these stages of evolution each have contributed in progressive and significant ways. Through them we now can look with new insight into the early differentiation of the Earth, the nature of the Earth's protocrust, the influence of the formation of large impact basins in that crust, the effects of early partial melting of the protomantle and possibly the earliest stages of the breakup of the protocrust into continents and ocean basins.  相似文献   

10.
The planned missions to Comet Halley, which will arrive at the nearest space of the Sun in 1986, have recently revived interest in studying solar wind interaction with comets. Several unsolved problems exist and the most urgent of them are as follows:
  1. The character of the solar wind interaction with comets: bow shocks and contact surface formation near comets; similarities and differences of solar- wind interaction with comets and with Venus. The differences are probably associated with a great extension of neutral atmospheres of comets (due to a practical lack of cometary gravitation) and the ‘loading’ of the solar wind flux by cometary ions during the interaction.
  2. The anomalous ionization in cometary heads.
  3. The problem of the anamalously high accelerations of ions in the plasma tails of comets.
  4. The variability of plasma structures observed in cometary tails.
  相似文献   

11.
The Solar Terrestrial Relations Observatory (STEREO) is the third mission in NASA’s Solar Terrestrial Probes program. The mission is managed by the Goddard Space Flight Center (GSFC) and implemented by The Johns Hopkins University Applied Physics Laboratory (JHU/APL). This two-year mission provides a unique and revolutionary view of the Sun–Earth system. Consisting of two nearly identical observatories, one ahead of Earth in its orbit around the Sun and the other trailing behind the Earth, the spacecraft trace the flow of energy and matter from the Sun to Earth and reveal the three-dimensional structure of coronal mass ejections (CMEs) to help explain their genesis and propagation. From its unique side-viewing vantage point, STEREO also provides alerts for Earth-directed solar ejections. These alerts are broadcast at all times and received either by NASA’s Deep Space Network (DSN) or by various space-weather partners.  相似文献   

12.
The empirical properties of the various dynamic phenomena are reviewed and interrelated with emphasis on recent observational results. The topics covered are:
  1. Introduction
  2. Aperiodic Phenomena
  3. Externally Driven Phenomena
  4. Umbral Flares
  5. Inverse Evershed Flow
  6. Internally Driven Phenomena
  7. Penumbra
  8. Penumbral Grains
  9. Evershed Flow
  10. Umbra
  11. Umbral Dots
  12. Inhomogeneity of the Umbral Magnetic Field
  13. Umbral Turbulence
  14. Oscillations and Waves
  15. Chromosphere
  16. Umbra: Oscillations and Flashes
  17. Penumbra: Running Waves and Dark Puffs
  18. Photosphere
  19. Overview
It is proposed from the observations that umbral dots and penumbral grains are essentially the same phenomenon, and that the observational goal of highest priority with respect to both the origin of the periodic phenomena and the problem of the missing heat flux is to better determine the nature of these elementary bright features.  相似文献   

13.
Certain aspects of the Sun and resulting geomagnetic disturbances can be studied better on the source surface, an imaginary spherical surface of 3.5 solar radii, than on the photospheric surface. This paper presents evidence that the Sun exhibits one of the most fundamental aspects of activities most clearly during the late-declining phase of the sunspot cycle. It is the period when 27-day average values of the solar wind speed and of geomagnetic disturbances tend to be highest during the sunspot cycle. Important findings of this study on the late-declining phase of the sunspot cycle are the following:
  1. By introducing a new coordinate system, modifying the Carrington coordinates, it is shown that various solar activity phenomena, solar flares, the brightest coronal regions, and also the lowest solar wind speed region, tend to concentrate in two quadrants, one around 90° in longitude in the northern hemisphere (NE) and the other around 270° in longitude in the southern hemisphere (SW). For this reason, the new coordinate system is referred to as the NESW coordinate system.
  2. It is shown that the above results are closely related to the fact that the neutral line exhibits a single wave (sinusoidal or rectangular) in both the Carrington coordinates and the NESW coordinate system during the late-declining phase. The shift of the neutral line configuration during successive solar rotations during the late-declining phase causes longitudinal scatter of the location of solar flares with respect to the neutral line in a statistical study. The NESW coordinate system is designed to suppress the shift, so that the single wave location is fixed and thus a ‘nest’ of solar flares emerges in the NE and SW quadrants.
  3. It is also shown that the single wave is the source of the double peak of the solar wind speed and two series of recurrent geomagnetic disturbances in each solar rotation, making the 27-day average solar wind and geomagnetic disturbances highest during the sunspot cycle. The double peak is a basic feature during the late-declining phase, but is obscured by several complexities which we identified in this paper; see item 8.
  4. The single wave of the neutral line configuration can be approximated by three dipole fields, one which can be represented by a central dipole (parallel or anti-parallel to the rotation axis) and two hypothetical dipoles on the photosphere. This configuration is referred to as the triple dipole model.
  5. The location of the two hypothetical photospheric dipoles coincide with the two active regions (solar flares, the brightest coronal region) and also the lowest solar wind speed region in the NESW coordinate system; the lowest solar wind regions are the cause of the valleys of the double peak of the solar wind speed.
  6. The two hypothetical dipole fields actually do exist at the location of the two active regions in a coarse magnetic map (5 × 5°). The two dipoles follow the Hale–Nicholson polarity law. Thus, they are real physical entities.
  7. The apparent meridional rotation of the dipolar field on the source surface during the sunspot cycle results from combined changes of both the central dipole field and of the two photospheric dipoles, although the central dipole remains axially parallel or anti-parallel. Thus, the Sun has a general field that can be represented by an axially aligned dipole located at the center of the Sun throughout the sunspot cycle, except for the sunspot maximum period when the polarization reversal occurs.
  8. The complexity of recurrent geomagnetic disturbances can also be understood by having the NESW coordinate system for various solar phenomena and the relative location of the earth with respect to the solar equatorial plane.
  9. As the intensity of the two dipoles decreases toward the end of the sunspot cycle, the amplitude of the single wave decreases, and the neutral line tends to align with the heliographic equator.
  10. The neutral line shows a double wave structure during certain epochs of the sunspot cycle. In such a situation, it can be considered that two NESW coordinate systems are present in one Carrington coordinate, resulting in four active regions.
  11. The so-called classical “sector boundary” arises when the peaks (top and bottom) of the single wave reached 90° in latitude in both hemispheres.
  12. In summary: A study of the late-declining period of the sunspot cycle is very important compared with the sunspot maximum period. In the late-declining period, the Sun shows its activities in the simplest form. It is suggested that some of the basic features of solar activities and recurrent geomagnetic disturbances that have been studied by many researchers in the past can be synthesized in a simplest way by introducing the NESW coordinate system and the triple dipole model. There is a possibility that the basic results we learned during the late phase of the sunspot cycle can be applicable to the rest of the sunspot cycle.
  相似文献   

14.
Major interplanetary shock waves have often been successfully associated with major solar flares. The interplanetary response to weaker solar events, e.g., eruptive prominences (EP) and slow coronal transients, is far less pronounced. Recently, progress has been made by combining the newly-available data of white-light-coronagraph measurements from the earth-orbiting satellite P78/1 (these data show the development of coronal transients between 2.5 and 10 R bd, in-situ plasma measurements from the HELIOS solar probes positioned mostly above the Sun's limb at solar distances between 60 and 200 R bd (showing the reactions of the interplanetary plasma), ground based Hα-coronagraphs (showing in a few cases the evolution of EP's from the Sun's limb up to 1.5 Abd). In the years 1979 to 1981 about 25 uniquely associated events were identified, 19 of which allow some detailed analysis. The events can be sorted into three main categories:
  • The ‘flare-type’: 13 events, probably all of them flare-related, transient speeds v t from 560 to 1460 km s?1, no evidence for post-acceleration of the transient (indicating impulsive injection), all transients followed by drastic interplanetary shock waves, some of them probably involving magnetic clouds.
  • The ‘EP-type’: 4 events, none of them flare-related, at least one was observed as an Hα-EP, transient speed from 200 to 410 km s-1, all post-accelerated (indicating ‘driven’ injection), all followed by shocks with at least one magnetic cloud, one showing presence of He+ and O2+ behind the shock.
  • The ‘NCDE-type’: 2 events, one observed as an Hα-EP, the other without known solar source, v t , = 130 and 470 km s?1, one post-accelerated, the other one not, considerable density increase in interplanetary plasma (however, in pressure equilibrium with surroundings), one event including shock, the other not. These two events may not belong to the same category.
  • Our results are not completely consistent with previous work which is mainly based on data from the Skylab era, 1973/74. This could be due to the different phase in the solar cycle. The study is being continued.  相似文献   

    15.
    The detailed study of the solar-terrestrial energy chain will be greatly enhanced with the launch and simultaneous operation of several spacecraft during the current decade. These programs are being coordinates in the United States under the umbrella of the International Solar Terrestrial Physics Program (ISTP) and include fundamental contributions from Japan (GEOTAIL Program) and Europe (SOHO and CLUSTER Programs). The principal United States contribution to this effort is the Global Geospace Science Program (GGS) described in this overview paper. Two spacecraft, WIND and POLAR, carrying an advanced complement of field, particle and imaging instruments, will conduct investigations of several key regions of geospace. This paper provides a general overview of the science objectives of the missions, the spacecraft orbits and the ground elements that have been developed to process and analyze the instrument observations.  相似文献   

    16.
    Measurements of radiation levels at Mars including the contributions of protons, neutrons, and heavy ions, are pre-requisites for human exploration. The MARIE experiment on the Mars-01 Odyssey spacecraft consists of a spectrometer to make such measurements in Mars orbit. MARIE is measuring the galactic cosmic ray energy spectra during the maximum of the 24th solar cycle, and studying the dynamics of solar particle events and their radial dependence in orbit of Mars. The MARIE spectrometer is designed to measure the energy spectrum from 15 to 500 MeV/n, and when combined other space based instruments, such as the Advanced Composition Explorer (ACE), would provide accurate GCR spectra. Similarly, observations of solar energetic particles can be combined with observations at different points in the inner heliosphere from, for example, the Solar Heliospheric Observatory (SOHO), to gain information on the propagation and radial dependence in the Earth-Mars space. Measurements can be compared with the best available radiation environment and transport models in order to improve these models for subsequent use, and to provide key inputs for the engineering of spacecraft to better protect the human crews exploring Mars.  相似文献   

    17.
    In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   

    18.
    We investigated the effect of mass accretion on the secondary components in close binomy systems (M total ≤ 2.5 M M 2,0 ≤ 0.75 M ) exchanging mass in the case A. The evolution of the low-mass close binary systems (M total ≤ 2.5 M ) exchanging the mass in the case A depends on the three main factors:

  • -the initial mass ratio (q 0 = M 2,0/M 1,0), which determines the rate of mass transfer between components;
  • -the inital mass of the secondary component (M 2,0) and
  • -the effectiveness of the heating of the photosphere of the secondary component, by infalling matter.
  • The second factor allows to divide all systems into two essentially different groups:
    1. systems in which the secondary component is a star with a radiative envelope, or with a thin convection zone in the uppermost layers;
    2. and systems in which secondary component has a thick convective envelope or is fully convective.
    The systems from the first group evolve into contact in a characteristic time scale 105 – 107 years, and reach contact after transfering of 0.03 – 0.3 M . The mass exchange proceeds only in a thermal time scale. For the systems from the group b the effectiveness of the heating of the stellar surface is the most important. In the case when the entropy of the newly accreted matter is the same as the surface entropy of the secondary, a convective star should shrink upon accretion. Then contact binaries are not formed. In the case when the entropy of the infalling matter is greater then that on the surface, the reaction of the secondary is different. The radius of the secondary component grows rapidly in response to accretion, and the systems reaches contact after the 103 – 3 106 years, and after transfer of 0.002 – 0.2. M . The reaction of the secondary is determined by the formation of the temperature inversion layer below the stellar surface. Full references in: Sarna, M.J. and Fedorova, A.V. (1988) “Evolutionary status of W UMa-type Binaries — Evolution into contact”, Astron. Astrophys., in press.  相似文献   

    19.
    The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is based on finding low-dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena:
    1. Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation.
    2. Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.
      相似文献   

    20.
    A number of previously unclassified multiplets of Fexiv, xiii, xii, and xi produced by transitions of the type 3s 23p n -3s3p n+1 are identified in the XUV spectrum of the Sun. The iron lines account for most of the previously unidentified strong lines between 330 and 370 Å. Solar observations of especial value for the investigation of the 300–400 Å region were the slitless spectroheliograms of September 22, 1968 (Purcell and Tousey, 1969) and November 4, 1969 (Tousey, 1971) — on which the image of a flare was recorded. Other solar identifications in the same spectral region include the resonance lines of Nixvii and Nixviii, and one 3p-3d multiplet of Fexiii. The solar blend at 417 Å involving the Fexv inter-combination line and Sxiv is resolved.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号