首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用T800碳纤维/聚醚醚酮(T800/PEEK)预浸料,以高温、模压方式制备了热塑性单向复合材料,通过拉伸、面内剪切试验方法对其模量和强度进行了测试分析,得到了不同载荷形式作用下的宏观失效破坏模式。针对T800/PEEK复合材料的微细观结构特点,建立了有限元代表性体积单元模型(RVE)和碳纤维、PEEK基体以及纤维/基体界面三种材料的本构关系,基于渐进损伤失效模型和内聚力模型得到了单轴拉伸/压缩、面内剪切载荷作用下单元模型的应力应变曲线和微细观失效模式。相比于试验测试结果,有限元模型预测得到的拉伸模量/强度相差最大为11%,剪切模量/强度相差最大为5%。  相似文献   

2.
连续碳纤维增强镁基复合材料制备工艺研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了提高连续碳纤维增强镁基(Cf/Mg)复合材料的强度,采用压力浸渗法制备了T300/AZ91D和T700/AZ91D两种复合材料,通过改变预热温度和浇铸温度,对采用压力浸渗法制备连续Cf/Mg复合材料的组织与力学性能进行了研究。研究结果表明:预热温度太高会损坏碳纤维,影响碳纤维与基体的结合;浇铸温度太低会使熔体在碳纤维未浸渗完全时便已开始凝固;浇铸温度太高会损坏碳纤维,降低复合材料的力学性能;当预热温度为450 ℃、浇铸温度为800 ℃时,制备的T300/AZ91D复合材料弯曲强度最高,为865 MPa;当预热温度为450 ℃、浇铸温度为750 ℃时,制备的T700/AZ91D复合材料弯曲强度最高,为1 153 MPa。通过研究,提高了碳纤维增强镁基复合材料的力学性能,使该材料能更广泛地应用于航空航天领域。  相似文献   

3.
碳纤维湿法缠绕基体配方及成型研究   总被引:10,自引:2,他引:10  
研究了碳纤维增强复合材料用湿法成型工艺、基体配方的性能和使用期。研究的HTllA、HTllB两种配方浇注体拉伸强度达到100MPa以上。模量为3.9GPa.力学性能优良。配方具有较高的耐热性。使用期大于9h,完全适用于湿法缠绕成型。缠绕的~H50mm碳纤维增强复合材料容器特性系数(Py/Ⅳ)均大于34km.纤维强度转化率(K)达到82%以上。  相似文献   

4.
采用碳纤维无纬布缝合预制体,经"CVI+PIP"混合工艺制备了缝合C/C-SiC-ZrC复合材料。比较不同缝合密度对C/C-SiC-ZrC复合材料力学性能的影响,并通过扫描电子显微镜(SEM)观察复合材料断口的微观形貌。结果表明,在一定范围内,随着缝合密度的提升,缝合C/C-SiC-ZrC复合材料的拉伸强度有所下降,然而剪切强度有明显提升,最大可达24.94MPa。从SEM结果可以看出,无纬布缝合C/C-SiC-ZrC复合材料的拉伸破坏有明显假塑性断裂特性,在剪切载荷作用下,Z向纤维可有效抑制材料层间分层损伤。  相似文献   

5.
针刺预制体参数对C/C复合材料力学性能的影响   总被引:1,自引:0,他引:1  
通过针刺与化学气相沉积分别制备碳纤维预制体与碳基体,获得针刺C/C复合材料.研究了针刺密度、针刺深度、网胎面密度等预制体成型工艺参数对C/C复合材料力学性能的影响,并探讨了预制体体积密度与C/C复合材料力学性能关联关系.结果表明,针刺密度在20~ 50针/cm2之间时,C/C复合材料拉伸强度先增后减,而层间剪切强度一直上升;针刺深度在10~16 mm之间时,拉伸强度和层间剪切强度随针刺深度的提高而增加;网胎面密度在100~300 g/m2之间时,拉伸强度和层间剪切强度随网胎面密度的提高而降低;当只改变针刺密度、针刺深度、网胎面密度其中一个成型参数时,拉伸强度和层间剪切强度受预制体密度影响显著,预制体密度可作为预测C/C复合材料力学性能的一个宏观成型参数.  相似文献   

6.
通过针刺与化学气相沉积分别制备碳纤维预制体与碳基体,获得针刺C/C复合材料。研究了针刺密度、针刺深度、网胎面密度等预制体成型工艺参数对C/C复合材料力学性能的影响,并探讨了预制体体积密度与C/C复合材料力学性能关联关系。结果表明,针刺密度在20~50针/cm2之间时,C/C复合材料拉伸强度先增后减,而层间剪切强度一直上升;针刺深度在10~16 mm之间时,拉伸强度和层间剪切强度随针刺深度的提高而增加;网胎面密度在100~300 g/m2之间时,拉伸强度和层间剪切强度随网胎面密度的提高而降低;当只改变针刺密度、针刺深度、网胎面密度其中一个成型参数时,拉伸强度和层间剪切强度受预制体密度影响显著,预制体密度可作为预测C/C复合材料力学性能的一个宏观成型参数。  相似文献   

7.
预制体及基体对C/C复合材料性能的影响   总被引:1,自引:0,他引:1  
研究了预制体结构及其成型工艺和基体类型对C/C复合材料的力学性能、烧蚀性能和微观结构的影响。结果表明,它们对C/C复合材料的拉伸和压缩强度影响不显著,而对剪切性能影响明显。采用CVD成型工艺和树脂炭基体,对于二维预制体,C/C复合材料的剪切强度可达19MPa;对于准三维预制体,C/C复合材料层间剪切强度可达20MPa。不同类型的基体炭对复合材料的耐烧蚀性影响不同,CVD炭具有优异的抗烧蚀性能,树脂炭与沥青炭的抗烧蚀性能较差。采用先沉积后树脂浸渍炭化补充增密,可制备综合性能优异的热结构复合材料。  相似文献   

8.
热塑性复合材料作为轻质高强材料的杰出代表,已成为航空航天领域的首选材料之一。概述了热塑性复合材料常用的成型工艺。采用模具热压成型制备工艺,探索并成功制备了几种高性能碳纤维增强聚醚醚酮(CF/PEEK)热塑性复合材料构件,为高性能CF/PEEK热塑性复合材料构件在航空航天领域的应用提供了基础。  相似文献   

9.
对采用热熔胶膜法制备的高硅氧/酚醛和碳纤/酚醛预浸料及复合材料进行了研究。高硅氧/酚醛预浸料的百分流动度为20.4%,挥发份和树脂含量分别为5.2%和29.7%;碳纤/酚醛预浸料的百分流动度为28.9%,挥发份和树脂含量分别为5.8%和40.5%。对比分析了由热熔胶膜法和溶液法制备预浸料成型的碳纤/酚醛复合材料层压板的性能,采用热熔胶膜法制备的层压板的层间剪切强度提高了17.4%,拉伸强度和弯曲强度增加了45.3%和42.1%。氧乙炔线烧蚀率仅为溶液法的1/3。将其用于制备固体火箭发动机的扩散段,随炉试验件的性能评价表明:不仅热性能和力学性能优异,而且批次稳定性好,有助于降低热防护层的厚度,减轻火箭、导弹等的总体质量,对提高武器装备的性能具有重要的意义。  相似文献   

10.
分别采用HTA-P30碳纤维、T800碳纤维与PBO纤维进行了层间混杂,研究了不同的混杂比、不同性能的碳纤维以及不同的粘接界面对PBO/碳纤维复合材料的拉伸性能和层间剪切性能的影响。试验结果表明,T800与PBO纤维混杂后,复合材料的强度表现出混杂负效应,而模量和层间剪切强度表现出混杂正效应,且均随混杂比的增大而降低。PBO纤维经过表面处理后,提高了混杂复合材料的弱界面层粘结性能,从而强度、模量、层间剪切强度的混杂效应系数均有不同程度的增大,尤其是层间剪切强度的混杂效应系数提高程度很大,并且与纤维的表面状态密切相关。随着PBO纤维的混入,可降低复合材料性能的分散性(离散系数),提高质量可靠性。  相似文献   

11.
芳基乙炔改性甲基苯基硅树脂的合成及性能   总被引:1,自引:0,他引:1  
用芳基乙炔改性甲基苯基硅树脂来提高硅树脂及其复合材料的耐热性能.通过红外光谱对其改性前后树脂的结构进行表征;并且测试了复合材料界面剪切强度、弯曲强度和层间剪切强度.测试结果显示,改性后复合材料在室温及200 ℃下的界面剪切强度分别提高了3 MPa和8 MPa;室温下的弯曲强度提高到349.72 MPa,500 ℃烧蚀30 min后复合材料弯曲强度为301.01 MPa;室温下的层间剪切强度为25.21 MPa,经500 ℃烧蚀30 min后降至17.43 MPa,这些性能均高于相应条件下甲基苯基硅树脂复合材料.以上结果表明,芳基乙炔的引入提高了甲基苯基硅树脂的耐热性、界面性能及玻璃纤维复合材料的力学性能.  相似文献   

12.
采用超高压浸渍-炭化方法制备了沥青基C/C复合材料,并对其在1273~1773 K氧化后的力学性能进行了测试,借助扫描电镜研究了该材料的氧化形貌.实验结果表明,在恒温下,随着氧化时间的延长,试样弯曲强度和模量逐渐减小,弯曲强度和模量与时间呈线性关系;而在恒定时间条件下,随着氧化温度的升高,试样的弯曲强度和模量亦逐渐减小...  相似文献   

13.
高强度、中摸量碳纤维“东丽卡”T1000已研制成功。用树脂浸渍束丝试样,测得的T1000纤维的拉伸强度>7GPa,拉伸弹性模量为294GPa,断裂极限伸长率为2.4%。它的高拉伸强度很好地反映于其复合材料中。当它同合适的树脂系统结合时,得到的复合材料拉伸强度达3.5~3.8GPa。断裂伸长率达2.0%。  相似文献   

14.
孔隙的存在是炭纤维复合材料层压板加工过程中不可避免的缺陷,并且会对炭纤维复合材料结构的性能产生很大的损害.针对[(±45°)/(0,90°)_2/ (±45°)]_S炭纤维复合材料层压板,详细分析了层压板内孔隙的尺寸、形状及分布特征.通过施加不同的固化压力制备了不同孔隙率含量的试件.采用显微图像分析技术和性能测试对炭纤维复合材料层压板内孔隙的形态及其对炭纤维复合材料层压板力学性能的影响进行了研究,采用图像分析软件对孔隙的形状和尺寸进行了定量的表征.结果表明,对于铺层为[(±45°)/(0,90°)_2/ (±45°)]_S层压板,孔隙主要分布于层间,且都沿着平行于铺层的方向发展.随着固化压力的减小,孔隙率增大、层间剪切强度和压缩强度下降.  相似文献   

15.
炭/环氧3D机织复合材料轴向和非轴向拉伸性能的实验研究   总被引:1,自引:0,他引:1  
炭/环氧3D层-层正交角联锁机织复合材料是很有应用潜力的材料,但目前这种材料的力学性能数据较少,影响了其可靠性的评估。通过一系列的实验、分析,客观地评价了4种不同结构炭/环氧3D层-层正交角联锁机织复合材料沿0°、30°、45°、60°、90°方向的拉伸强度和拉伸模量。实验结果表明,4种材料均具有明显的正交各向异性特点,拉伸强度和拉伸模量的极值均出现在轴向,非轴向的拉伸强度和拉伸模量明显低于轴向值;带有衬经和衬纬结构的织物具有最佳的拉伸性能;4种材料的非轴向拉伸强度和拉伸模量彼此之间差异不是很大,拉伸过程伴随着剪切过程一同出现。  相似文献   

16.
针对卫星天线承力筒轻质、高轴向模量、低轴向热膨胀的需求,文章开展了承力筒总体成型方案设计、材料基础热力学性能测试及产品试制等工作,并通过了实验考核。结果表明:对于材料的热力学性能,按经纬向比例1︰2编织的M40J炭布层压板在常温下纬向拉伸模量为118GPa,纬向拉伸强度为771MPa;在(?190~150)℃范围内,纬向热膨胀系数为(0.3~1.4)×10?6℃?1,经向热膨胀系数为(0.3~5.3)×10?6℃?1。该复合材料承力筒比铝质承力筒质量减少40%以上。复合材料承力筒经过(?170~120)℃/24h、6.5个循环的高低温循环实验考核,产品无残余变形,内部未出现开裂、分层等现象。  相似文献   

17.
采用“化学气相渗透法 先驱体浸渍裂解法”(CVI PIP)混合工艺制备了固体冲压发动机燃气阀用3D C/S iC复合材料,并对复合材料的显微结构和力学性能进行了研究。复合材料的密度为2.1 g/cm3,复合材料的室温剪切强度和轴向弯曲强度分别为55 MPa和643 MPa。在断裂过程中,复合材料表现出明显非灾难性的韧性断裂行为,试样断裂面存在大量的拔出纤维。复合材料具有优异的绝热性能,Z向热导率为14.5 W/(m.K),X-Y面内热导率为5.0 W/(m.K)。研制的3D C/S iC复合材料燃气阀成功通过冷气轴向抗冲击试验和发动机高温搭载试验考核。  相似文献   

18.
采用不同间距、不同根数的纤维束穿刺成型炭纤维预制体,经进一步化学气相沉积、沥青浸渍-高压炭化致密制备穿刺C/C复合材料。拉伸性能测试结果表明,穿刺间距2.1mm、穿刺束纤维根数为12K的C/C复合材料获得高的拉伸强度,Z向拉伸强度131.4MPa,XY向拉伸强度111.3MPa;随着穿刺间距减小、穿刺丝束纤维根数增加,Z向纤维含量增加,Z向拉伸强度明显提高。穿刺C/C复合材料1800℃真空条件下的拉伸强度与室温相当,拉伸模量低于室温,延伸率高于室温;常温拉伸断口较平整,且纤维/基体间的裂纹明显,而高温拉伸断口参差不齐,纤维及基体断面粗糙,呈现出假塑性断裂特征。  相似文献   

19.
本文讨论了PRD—149这种新型超高模量Kevlar(芳纶)纤维的形貌及物理性能。该纤维结晶度高,具有独特的超晶态结构。其细纱的抗张强度为2.3~2.6GPa,抗张模量为162~175GPa,而市场供应的Kevlar—49纤维的抗张强度约为2.8GPa,抗张模量约为121GPa(与纤维型号和旦数有关)。PRD—149的高结晶度减小了纤维的蠕变和回潮率。纤维性能在复合材料中转化较好。其环氧浸渍原丝模量与高强碳纤维相近。预料它能在许多领域,从光导纤维电缆增强材料到芳纶/碳纤维混杂复合材料中得以应用。  相似文献   

20.
以降低传统碳/酚醛复合材料密度为目的,在对复合材料密度进行理论分析计算的基础上,采用在酚醛树脂中添加轻质填料的方法制备低密度碳/酚醛复合材料,按照正交实验法对轻质填料含量以及复合材料制备工艺参数进行分析与优化。结果表明,分别采用聚丙烯腈基碳纤维和粘胶基碳纤维作为增强材料,研制的碳/酚醛复合材料的密度分别为1.339 g/cm~3和1.211 g/cm~3,拉伸强度分别为294 MPa和131 MPa,剪切强度分别为15.0 MPa和14.7 MPa,室温热导率分别为0.215 W/(m·K)和0.476 W/(m·K),200℃热导率分别为0.340 W/(m·K)和0.599 W/(m·K),氧乙炔线烧蚀率分别为0.011 mm/s和0.030 mm/s,复合材料密度降低的同时,其他性能满足固体火箭发动机喷管烧蚀防热材料的使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号