首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past several years, X-ray observations of the Sun made from rockets and satellites have demonstrated the existence of high temperature (20 × 106 – 100 × 106 K), low density plasmas associated with solar flare phenomena. In the hard X-ray range ( < 1 ), spectra of the flaring plasma have been obtained using proportional and scintillation counter detectors. It is possible from these data to determine the evolution of the hard X-ray flare spectrum as the burst progresses; and by assuming either a non-thermal or thermal (Maxwellian) electron distribution function, characteristic plasma parameters such as emission measure and temperature (for a thermal interpretation) can be determined. Thermal interpretations of hard X-ray data require temperatures of 100 × 106 K.In contrast, the soft X-ray flare spectrum (1 <<30 ) exhibits line emission from hydrogen-like and helium-like ions, e.g. Ne, Mg, Al, Si,... Fe, that indicates electron energies more characteristic of temperatures of 20 × 106 K. Furthermore, line intensity ratios obtained during the course of an event show that the flare plasma can only be described satisfactorily by assuming a source composed of several different temperature regions; and that the emission measures and temperatures of these regions appear to change as the flare evolves. Temperatures are determined from line ratios of hydrogen-like to helium-like ions for a number of different elements, e.g., S, Si, and Mg, and from the slope of the X-ray continuum which is assumed to be due to free-free and free-bound emission. There is no obvious indication in soft X-ray flare spectra of non-thermal processes, although accurate continuum measurements are difficult with the data obtained to date because of higher order diffraction effects due to the use of crystal spectrometers.Soft X-ray flare spectra also show satellite lines of the hydrogen-like and helium-like ions, notably the 1s 22s 2 S-1s2s2p 2 P transition of the lithium-like ion, and support the contention that in low density plasmas these lines are formed by dielectronic recombination to the helium-like ion. Also, series of allowed transitions of hydrogen-like and helium-like ions are strong, e.g., the Lyman series of S up to Lyman-, and ratios of the higher member lines to the Lyman- line can be compared with theoretical calculations of the relative line strengths obtained by assuming various processes of line formation.This review will discuss the X-ray spectrum of solar flares from 250 keV to 0.4 keV, but will be primarily concerned with the soft X-ray spectrum and the interpretation of emission lines and continuum features that lie in this spectral range.  相似文献   

2.
Energy release in solar flares occurs during the impulsive phase, which is a period of a few to about ten minutes, during which energy is injected into the flare region in bursts with durations of various time scales, from a few tens of seconds down to 0.1 s or even shorter. Non-thermal heating is observed during a short period, not longer than a few minutes, in the very first part of the impulsive phase; in average flares, with ambient particle densities not larger than a few times 1010 cm–3 it is due to thick-target electron beam injection, causing chromospheric ablation followed by convection. In flares with larger densities the heating is due to thermal fronts (Section 1). The average energy released in chromospheric regions is a few times 1030 erg, and an average number of 1038 electrons with E 15 keV is accelerated. In subsecond pulses these values are about 1035 electrons and about 1027 erg per subsecond pulse. The total energy released in flares is larger than these values (Section 2). Energization occurs gradually, in a series of fast non-explosive flux-thread interactions, on the average at levels about 104 km above the solar photosphere, a region permeated by a large number ( 10) of fluxthreads, each carrying electric currents of 1010–1011 A. The energy is fed into the flare by differential motions of magnetic fields driven by photospheric-chromospheric movements (Section 3). In contrast to these are the high-energy flares, characterized by the emission of gamma-radiation and/or very high-frequency (millimeter) radiobursts. Observations of such flares, of the flare neutron emission, as well as the observation of 3He-rich interplanetary plasma clouds from flares all point to a common source, identified with shortlived ( 0.1 s) superhot ( 108 K) flare knots, situated in chromospheric levels (Section 4). Pre-flare phenomena and the existence of homologous flares prove that flare energization can occur repeatedly in the same part of an active region: the consequent conclusions are that only seldom the full energy of an active region is exhausted in one flare, or that the flare energy is generated anew between homologous flares; this latter case looks more probable (Section 5). Flare energization requires the formation of direct electric fields, in value comparable with, or somewhat smaller than the Dreicer field (Section 6). Such fields originate by current-thread reconnection in a regime in which the current sheet is thin enough to let resistive instability originate (Section 7). Particle acceleration occurs by fast reconnection in magnetic fields 100 G and electric fields exceeding about 0.3 times the Dreicer field at fairly low particle densities ( 1010 cm–3); for larger densities plasma heating is expected to occur (Section 8). Transport of accelerated particles towards interplanetary space demands a field-line configuration open to space. Such a configuration originates mainly after the gradual gamma-ray/proton flares, and particularly after two-ribbon flares; these flares belong to the dynamic flares in Sturrock and vestka's flare classification. Acceleration to GeV energies occurs subsequently in shock waves, probably by first-order Fermi acceleration (Section 9).  相似文献   

3.
This paper gives a review of the recent high-resolution H observations of solar flares and flare-productive active regions. From studies of the morphological and evolutional features of H flare emitting regions, two types of two-ribbon flares, which are termed separating two-ribbon flare and confined two-ribbon flare, are discussed. The former is characterized by conspicuous separating motions or expanding motions of the H two ribbons, whereas the latter shows only a short range of or no separating motions of the two ribbons. The explosive compact flares, which occur in some compact newly-emerging flux regions, are also discussed.Attention is paid to the successive and impulsive brightenings of H flare points which form the H flare kernels and the front lines of H two ribbons at the impulsive phases of flares. Temporal relationships between H line intensities or profiles and hard X-ray or microwave emissions are discussed to discriminate the energy transport mechanisms in the flare loops.H monochromatic image of high spatial resolution, at the present time, is the most sensitive detector for finding the first appearance of newly-emerging magnetic flux region and the developing features of sheared configuration of magnetic field, both of which are the key factors in flare energy build-up processes. It is suggested that the successive emergence of a twisted magnetic flux rope might be essential for the production of a major flare.Contributions from the Kwasan and Hida Observatories, Kyoto University, No. 292.  相似文献   

4.
Relativistic solar proton events   总被引:1,自引:0,他引:1  
Energetic solar flare particles contain rich information concerning mechanisms of particle acceleration on the Sun and subsequent transport through turbulent interplanetary space. Even the most energetic particles, in particular protons with kinetic energy above 500 MeV, may undergo coronal and interplanetary propagation effects, disturbing their accelerated injection spectrum after release from the solar flare. Relativistic solar proton events are recorded by neutron monitors at ground level. A detailed knowledge of the response of these ground-based detectors to the impact by a beam of protons on the top of the atmosphere is required to analyze these observations. The spectral index of arriving protons can be obtained from the response of the world-wide network of neutron monitors provided their directional anisotropy is known. The spectral index may also by determined from the relative enhancements in count rates of two similar detectors at different altitudes but similar asymptotic cones of acceptances, or from the relative enhancements of two detectors with different spectral sensitivities but at the same location of high latitude. Ground level enhancements from solar flare protons have been recorded at Sanae, Antarctica, since 1971 by two neutron monitors with different sensitivities to primary protons in the rigidity range from 1 GV to 5 GV. Spectral indexes of about 20 of these more energetic solar flare proton events have been determined from the two detector enhancements recorded at Sanae. These indexes do not show any increase (softening of the relativistic proton spectra) with increasing heliolongitude away from the preferred IMF connection region as was obtained for 20–80 MeV protons. Furthermore, most of the enhanced count rates show fluctuations larger than statistical, indicative of propagation in a mostly turbulent interplanetary magnetic field.  相似文献   

5.
This work addresses the role of non-thermal protons as a means of transporting energy in stellar atmospheres. The most dramatic transient visible phenomena are flares, the best studied of which are from the Sun. It is believed that energetic particles take a fundamental part in flare development, but it is controversial as to whether protons or electrons play the dominant role. This review is aimed at helping resolve the controversy. We start by outlining acceleration mechanisms for energetic particles, on the premise that the acceleration site is in the corona. The propagation of a proton beam through the atmosphere is discussed, together with the radiation signatures it would produce. Chromospheric evaporation is expected as the beam reaches the dense part of the atmosphere. Direct observational evidence for energetic protons is reviewed, from gamma-ray production involving energies >30 MeV to H polarization, which is significant at energies 100 keV. Proton beams can be detected in the corona via slowly-drifting type III bursts, while they can be directly sampled by spacecraft and, at energies >1 GeV, by detectors on the Earth. A number of key flare observations and energy arguments are debated from the viewpoint of protons versus electrons. The conclusion is that primary non-thermal protons are much more important, in terms of total energy, than non-thermal electrons in flares, and that the bulk of the energetic electrons are secondary.  相似文献   

6.
We review the observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere. We particularly emphasize the advances made in burst physics over the last few years with the great improvement in spatial and time resolution especially with instruments like the NRAO three element interferometer, Westerbork Synthesis Radio Telescope and more recently the Very Large Array (VLA).We review the observations on pre-flare build-up of an active region at centimeter wavelengths. In particular we discuss the observations that in addition to the active region undergoing brightness and polarization changes on time scales of the order of an hour before a flare, there can be a change of the sense of polarization of a component of the relevant active region situated at the same location as the flare, implying the emergence of a flux of reverse polarity at coronal levels. The intensity distribution of cm- bursts is similar to that of soft X-ray and hard X-ray bursts. Indeed, it appears that the flaring behavior of the Sun at cm wavelengths is similar to that of some other cosmic transients such as flare stars and X-ray bursters.We discuss three distinct phases in the evolution of cm bursts, namely, impulsive phase, post-burst phase, and gradual rise and fall. The radiation mechanism for the impulsive phase of the microwave burst is gyrosynchrotron emission from mildly relativistic electrons that are accelerated near the energy release site and spiral in the strong magnetic field in the low corona. The details of the velocity distribution function of the energetic electrons and its time evolution are not known. We review the spectral characteristics for two kinds of velocity distribution, e.g., Maxwellian and Maxwellian with a power law tail for the energetic electrons. In the post-burst phase the energetic electrons are gradually thermalized. The thermal plasma released in the energy release region as well as the expanded parts of the overheated upper chromosphere may alter the emission mechanism. Thus, in the post-burst phase, depending on the average density and temperature of the thermal plasma, the emission mechanism may change from gyrosynchrotron to collisional bremsstrahlung from a thermal plasma. The gradual rise and fall (GFR) burst represents the heating of a flare plasma to temperatures of the order of 106 K, in association with a flare or an X-ray transient following a filament disruption.We discuss the flux density spectra of centimeter bursts. The great majority of the bursts have a single spectral maximum, commonly around 6 cm- The U-shaped signature sometimes found in cm-dcm burst spectrum of large bursts is believed to a be a reflection of only the fact that there are two different sources of burst radiation, one for cm- and the other for dcm-, with different electron energy distributions and different magnetic fields.Observations of fine structures with temporal resolutionof 10–100 ms in the intensity profiles of cm- bursts are described. The existence of such fine time structures imply brightness temperatures in burst sources of order 1015 K; their interpretation in terms of gyrosynchrotron measuring or the coherent interaction of upper hybrid waves excited by percipitating electron beams in a flaring loop is discussed.High spatial resolution observations (a few seconds of arc to 1 arc) are discussed, with special reference to the one- and two-dimensional maps of cm burst sources. The dominance of one sense of circular polarization in some weak 6 cm bursts and its interpretation in terms of energetic electrons confined in an asymmetric magnetic loop is discussed. Two-dimensional snapshot maps obtained with the VLA show that multi-peak impulsive 6 cm burst phase radiation originates from several arcades of loops and that the burst source often occupies a substantial portion of the flaring loop, and is not confined strictly to the top of the loop. This phenomenon is interpreted in terms of the trapping of energetic electrons due to anomalous doppler resonance instability and the characteristic scale length of the magnetic field variation along the loop. The VLA observations also indicate that the onset of the impulsive phase of a 6 cm burst can be associated with the appearance of a new system of loops. The presence of two loop systems with opposite polarities or a quadrupole field configuration is reminiscent of flare models in which a current sheet develops in the interface between two closed loops.We provide an extensive review of the emission and absorption processes in thermal and non-thermal velocity distributions. Unlike the thermal plasma where absorption and emission are inter-related through Kirchoff's law, the radiation emitted from a small population of non-thermal electrons can be reabsorbed from the same electrons (self-absorption) or from the background (thermal) electrons through gyro-resonance absorption, and free-free absorption. We also suggest that the non-thermal electrons can be unstable and these instabilities can be the source of very high brightness temperature, fine structure ( 10 ms) pulsations.Finally in the last part of this review we present several microwave burst models-the magnetic trap model, the two-component model, thermal model and the flaring loop model and give a critical discussion of the strength and weakness of these models.  相似文献   

7.
This work addresses the observational and physical effects of particle beams in the solar atmosphere. Mainly electron beams are considered, but also some effects of proton and neutral beams are mentioned. Briefly describing acceleration mechanisms of superthermal particles, the main attention is devoted to effects influencing the particle beam propagation. The collisional energy losses and pitch-angle scattering, return current effects, mirroring in the converging magnetic field, and the scattering in the Alfvén and whistler wave turbulence in specific situations are considered. The role of quasi-linear relaxation is discussed. Examples of observations showing effects of particle beams in the solar atmosphere are presented throughout the paper. Separate chapters are devoted to processes connected with particle beam bombardment of dense layers of the solar atmosphere: hard X-ray and -ray flare emissions, evaporation process, asymmetry of optical chromospheric lines, and impact linear H line polarization. The beam induced energy release processes are also included. The presented effects of particle beams are summarized in the conclusions and future prospects are suggested.  相似文献   

8.
A series of spectacular cosmic ray events which included two relativistic solar particle enhancements and three major Forbush decreases were registered by ground-based cosmic ray monitoring stations beginning 4 August, 1972. These were associated with four major proton flare events on the Sun and with large interplanetary magnetic field disturbances and high velocity shock waves. This review attempts to discuss and interpret the high energy cosmic ray phenomena observed during this period in the light of the known behaviour of low energy particulate flux, interplanetary plasma and field observations and other associated solar and terrestrial effects recorded during this period.The first Forbush decrease event FD-1 occurred in the early hours of 4 August, exhibiting very strong north-south and east-west anisotropies. Immediately following the onset of FD-1, the first ground level solar particle enhancement occurred. This event, which had its onset almost 6 h after the flare event on 4 August, had a very steep rigidity spectrum. The major Forbush event of the series which had its onset at 2200 UT on 4 August, exhibited extremely interesting and complex behaviour, the prominent features of which are a precursory increase prior to the onset (PI-1), a large decrease (FD-2), the largest observed to date, followed immediately by an abrupt square wave like enhancement (PI-2). Interplanetary space during this entire period was highly disturbed by the presence of large low energy particulate fluxes and shock waves, at least one of which had a velocity exceeding 2000 km s-1. Large north-south and east-west anisotropies existed throughout the event. Both FD-2 and PI-2 were characterized by almost the same rigidity spectrum, with a power law index of -1.2 ± 0.2, and a predominant anisotropy along the sunward direction. The square wave-like spike PI-2 during the recovery of FD-2 was associated with a similar abrupt change in low energy particle flux in space, as well as an abrupt decrease in the interplanetary magnetic field value from 50 to 10 .Based on the available particle, field and plasma observations, an unified model is presented to explain the Forbush event in terms of a transient modulating region associated with the passage of a narrow magnetic shock front. In this model, the reflection of particles from the approaching shock front account for the precursory increase PI-1. The main Forbush event is caused when the magnetic barrier at the shock front sweeps past the Earth. The square wave increase is due to the enhanced flux contained in the magnetic well just behind the shock front and bounded by magnetic discontinuities, which is explained as due to the transverse diffusion of particles into this region from the interplanetary space which have easy access to this region. In situ plasma, field and low energy particle observations are reviewed to support the model.Also Professor at Physical Research Laboratory, Ahmedabad 380009, India.  相似文献   

9.
Some theoretical aspects of solar coronal streamers are discussed with emphasis on the current sheet and reconnection processes going on along the axis of the streamer. The dynamics of the streamer is a combination of MHD and transport, with acceleration of particles due to reconnection and leakage of plasma outwards as a slow solar wind as the observable results. The presence of the almost-closed magnetic bottles of streamers that can store high-energy particles for significant times provides the birdcage for solar cosmic rays, the reconnection in the sheet feeds medium-energy protons into the corona for the large-scale storage needed for certain flare models, and the build-up of excess density sets the stage for coronal mass ejections.  相似文献   

10.
The question of how low-frequency radio emissions in the outer heliosphere might be generated is considered. It is argued that the free energy contained in an electron beam distribution is first transformed into electrostatic Langmuir waves. The nonlinear interactions of these waves which can produce electromagnetic waves are then treated in the semi-classical formalism. Comparison of the results of the discussed model with electromagnetic radiation coming from upstream of the Earth's bow shock shows that the model adequately explains the generation of plasma waves at planetary shocks. By analogy, this model can provide a quantitative explanation of intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. The field strength of Langmuir waves required to generate the second harmonic emissions are approximately of 100–200 V m–1 for the primary and 50–100 V m–1 for the secondary foreshocks. However, only in the secondary foreshock the expected density is consistent with the observed frequency.  相似文献   

11.
Solar gamma rays     
The theory of gamma-ray production in solar flares is treated in detail. Both lines and continuum are produced. The strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24±0.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric 3He abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from 12C and at 6.2 from 16O and 15N. These lines result from both direct excitation and spallation. The widths of individual prompt lines are determined by nuclear kinematics. The width of the 4.43 MeV line is 100 keV and that of the 6.2 MeV feature is 300 keV. Both these lines have been observed from a solar flare. Other potentially observable lines are predicted at 0.845 and 1.24 MeV from 56Fe, at 1.63 MeV principally from 14N and 20Ne, at 1.78 MeV from 28Si, at 5.3 MeV from 15O and 15N, and at 7.12 MeV from 16O. The widths of the iron lines are only a few keV, while those of the other lines are about 100 keV. The only other observed line is at 0.511 MeV from positron annihilation. The width of this line is determined by the temperature, and its temporal variation depends on the density of the ambient medium in the annihilation region. Positrons can also annihilate from the 3 S state of positronium to produce a 3-photon continuum below 0.511 MeV. In addition, the lines of 7Li and 7Be at 0.478 keV and 0.431 keV, which have kinematical widths of 30 keV, blend into a strong feature just below the 0.511 MeV line.From the comparison of the observed and calculated intensities of the line at 4.4 MeV to that of the 2.2 MeV line it is possible to obtain information on the spectrum of accelerated nuclei in flares. Moreover, from the absolute intensities of these lines the total number of accelerated nuclei at the Sun and their heating of the flare region can be estimated. We find that about 1033 protons of energies greater than 30 MeV were produced in the 1972, August 4 flare.The gamma-ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities we find a proton-to-electron ratio of about 10 to 102 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma-ray emission produce a few percent of the heat generated by the electrons which make the hard X-rays above 20 keV.NAS-NRC Resident Research Associate.Research supported by the National Science Foundation under Grant GP 31620.  相似文献   

12.
Freja *, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities.  相似文献   

13.
Stellar flares     
Radio and X-ray observations of stellar flares provide the most direct probes of energy relaase particle acceleration, and energy transport on stars other than the Sun. In this review, the observational basis for our understanding of the flare phenomenon on other stars is briefly described and outstanding interpretive and theoretical issues are discussed. I shall confine my attention to objects which are solar-like, to the extent that they possess deep convective envelopes and display activity which is presumed to be magnetic in origin. These include pre-main sequence objects, classical flare stars, and close binaries. Future directions are briefly discussed.  相似文献   

14.
Recent observational and theoretical studies of interplanetary shock waves associated with solar flares are reviewed. An attempt is made to outline the framework for the genesis, life and demise of these shocks. Thus, suggestions are made regarding their birth within the flare generation process, MHD wave propagation through the chromosphere and inner corona, and maturity to fully-developed coronal shock waves. Their subsequent propagation into the ambient interplanetary medium and disturbing effects within the solar wind are discussed within the context of theoretical and phenomenological models. The latter — based essentially on observations — are useful for a limited interpretation of shock geometric and kinematic characteristics. The former — upon which ultimate physical understanding depends — are used for clarification and classification of the shocks and their consequences within the solar wind. Classification of limiting cases of blast-produced shocks (as in an explosion) or longer lasting ejecta (or piston-driven shocks) will hopefully be combined with the study of the flare process itself.The theoretical approach, in spite of its contribution to clarification of various concepts, contains some fundamental limitations and requires further study. Numerical simulations, for example, depend upon a non-unique set of multi-parameter initial conditions at or near the Sun. Additionally, the subtle but important influence of magnetic fields upon energy transport processes within the solar wind has not been considered in the numerical simulation approach. Similarity solutions are limited to geometrical symmetries and have not exploited their potential beyond the special cases of the blast and the constant-velocity, piston-driven shock waves. These continuum fluid studies will probably require augmentation or even replacement by plasma kinetic theory in special situations when observations indicate the presence of anomalous transport processes. Presently, for example, efforts are directed toward identification of detailed shock structures (as in the case of Earth's bow shock) and of the disturbed solar wind (such as the piston).Further progress is expected with extensive in situ and remote monitoring of the solar wind over a wide range of heliographic radii, longitudes and latitudes.This paper is a revised and updated version of an invited review originally presented at the IUGG XV General Assembly, Moscow, U.S.S.R., 2–14 August 1971.  相似文献   

15.
A model for production of episodic -ray event at interaction of a moving gas target with, a beam of relativistic particles is proposed. The typical duration of -ray emission is limited by the flight time of the target across the beam as well as by the time of destruction and/or expulsion of the target by luminous beam. The time-dependent radiation spectra of the expanding and moving gas cloud irradiated by the beam are calculated for the galactic binary systems Her X-1 and AE Aquarii which are reported as episodic -ray emitters at very high energies. Some predictions and observational tests for the model are discussed.On leave from Yerevan Physics Institute, Armenia  相似文献   

16.
-ray astronomy is the study of the most energetic photons originating in our Galaxy and beyond, and therefore, provides the most direct means of studying the largest transfers of energy occurring in astrophysical processes. The first certain detection of celestial-rays came from a satellite experiment flown on OSO-III (Kraushaaret al., 1972); more recently two second generation spark chamber-ray telescopes, flown on the SAS-2 (Fichtelet al., 1975) and COS-B (Bennettet al., 1974) satellites, are now obtaining more detailed results on the high energy celestial radiation causing-ray astronomy to move from the discovery phase to the exploratory phase. The most striking feature of the celestial sphere when viewed in the frequency range of-rays is the emission from the galactic plane, which is particularly intense in the galactic longitudinal region from 300° to 50°. The longitudinal and latitudinal distributions are generally correlated with galactic structural features and when studied in detail suggest a non-uniform distribution of cosmic rays in the galaxy. Several point-ray sources have now been observed, including four radio pulsars. This last result is particularly striking since only one radio pulsar has been seen at either optical or X-ray frequencies. Nuclear-ray lines have been seen from the Sun during a large solar flare and future satellite experiments are planned to search for-ray lines from supernovae and their remnants. A general apparently diffuse flux of-rays has also been seen whose energy spectrum has interesting implications; however, in view of the possible contribution of point sources and the observation of galactic features such as Gould's belt, its interpretation must await-ray experiments with finer spatial and energy resolution, as well as greater sensitivity. Instruments with much greater sensitivity and improved energy and angular resolution are now available and will greatly enhance our understanding of high energy processes in astrophysics, especially in view of the high penetrating power of-rays, which for example permit them to reach the solar system from the far side of the galaxy essentially unattenuated.  相似文献   

17.
The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above 15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used. Two prototype sources of cosmic rays are considered: gas with solar system composition but enriched in elements with Z > 8 during acceleration and emission (by analogy with solar particle emission), and highly evolved matter enriched in r-process elements such as U, Th and transuranic elements. The energy-dependence of cosmic ray composition suggests that both sources may contribute at different energies.Miller Institute Professor, 1972–73.  相似文献   

18.
We present a detailed analysis of the magnetic topology of flaring active region. TheH kernels are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibrils or/and transverse magnetic field direction, is taken into account. We show that the kernels are magnetically connected by field lines passing close to the separator. We confirm, for other flares, previous studies which show that photospheric current concentrations are located at the borders of flare ribbons. Moreover we found two photospheric current concentrations of opposite sign, linked in the corona by field lines which follow separatrices. These give evidence that magnetic energy is released by reconnection processes in solar flares.  相似文献   

19.
In 1975, a rocket borne electron gun experiment will be achieved in Kerguelen Islands (South Indian Ocean), as a result of a cooperation between Soviet and French scientists. The gun will inject into the magnetosphere large currents (0.5 and 1 A) of high energy electrons (15 and 27 keV) with different initial pitch angles ( 0°, 70, 140°). A nose cone will be ejected at great distance ( 10 km) in front of the rocket, equipped mainly with radio wave receivers, both electric and magnetic, in the frequency range from 0 to 5 MHz, in order to study the wave particle interactions which will be induced by the beam. Optical and radioelectric observations will be performed in the conjugate area, in the district of Arkhangelsk (U.S.S.R.). During one of the two flights (launched in the magnetic meridian) attention will be focused on the wave particle interactions which are expected to be stronger when the beam is injected along the magnetic field line. The second flight, which will be launched towards the east, is attempted to study the azimuthal drift of the injected electrons and to derive some conclusions concerning the DC electric field, integrated over the line of force which joins the two conjugate points (L = 3.7). During both flights the energy and pitch angle distribution of atmospherically backscattered electrons will be studied.We describe the experiment and give the results of some preliminary computations which have been made by the different experimenters in order to predict the amplitude of the expected phenomena. A discussion is made of the respective ability for electron beam injection and cold plasma injection to artificially induce strong particle precipitation.On leave from Groupe de Recherches Ionosphériques, CNET, 92131 Issy-les-Moulineaux, France.  相似文献   

20.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号