首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高光谱观测卫星及应用前景   总被引:1,自引:0,他引:1  
介绍了我国高分辨率对地观测系统重大专项中第一颗实现高光谱分辨率观测的高光谱观测卫星(GF-5)卫星及其应用前景。该卫星设计运行于高度705km的太阳同步轨道,装载可见短波红外高光谱相机、全谱段光谱成像仪、大气主要温室气体监测仪、大气痕量气体差分吸收光谱仪、大气气溶胶多角度偏振探测仪、大气环境红外甚高光谱分辨率探测仪共6台有效载荷。卫星的光谱分辨率高且谱段全,具备高光谱与多光谱对地成像、大气掩星与天底观测、大气多角度偏振探测、海洋耀斑观测等多种观测模式,获取从紫外至长波红外(0.24~13.3μm)高光谱分辨率遥感数据;数据辐射分辨率高,载荷的光谱分辨率最高0.03cm-1,具备在轨定标功能,绝对辐射定标精度优于5%,光谱定标精度最高0.008cm-1;长波红外空间分辨率高;高码速率数传;高可靠长寿命设计。卫星入轨后将在环境综合监测、国土资源调查和气候变化研究等方面发挥重要作用。其典型应用有陆表环境综合观测、陆表局地高温及城市热岛效应监测、矿物填图、大气成分全球遥感监测和大气污染气体监测等。  相似文献   

2.
正高分五号卫星运行在高度705 km、升交点地方时13:30的太阳同步轨道,装载可见短波红外高光谱相机、全谱段光谱成像仪、大气气溶胶多角度偏振探测仪、大气痕量气体差分吸收光谱仪等六台遥感仪器。  相似文献   

3.
GF-5卫星的大气环境红外甚高光谱分辨率探测仪是中国目前光谱分辨率最高的红外超光谱探测载荷,它基于时间调制傅里叶变换光谱探测技术,通过太阳掩星观测方式在750~4 160cm–1(2.4~13.3μm)光谱范围内,实现光谱分辨率0.03cm–1的大气透射光谱探测。该载荷的两大技术特点和难点是高光谱分辨率和自主精密太阳跟踪,采用大光程差摆臂角镜傅里叶变换光谱仪实现了红外宽谱段、高分辨率光谱探测,研制了图像反馈太阳跟踪装置实现在轨自主精密太阳跟踪。文章回顾了该载荷的系统设计、关键技术及实现情况,给出了地面测试与试验结果,可为同类载荷研制提供参考。  相似文献   

4.
大气环境监测卫星(DQ-1)是国家民用空间基础设施中长期发展规划中的科研卫星,其运行于705 km高度的太阳同步轨道,装载大气探测激光雷达(ACDL)、高精度偏振扫描仪(POSP)、多角度偏振成像仪(DPC)、紫外高光谱大气成分探测仪(EMI)及宽幅成像光谱仪(WSI)等5台遥感仪器,通过主动激光与被动高光谱、多光谱、多角度、偏振等手段结合,实现对大气CO2、细颗粒物、污染气体、云和气溶胶等要素,以及对大气环境、水环境和生态环境等进行大范围、连续、动态、全天时的综合监测;卫星CO2柱浓度探测精度优于1 ppm,为国际最高。卫星入轨后各分系统工作正常,在轨测试结果均满足要求,能够进一步提升我国大气环境综合监测、全球气候变化和农作物估产、农业灾害等应对能力,推动生态环境、气象、农业农村等领域遥感应用。本文概述了DQ-1卫星的总体设计方案,总结了卫星的主要技术特点及创新点,介绍了卫星系统在轨测试情况,并对卫星的应用前景进行了展望。  相似文献   

5.
"高分五号"卫星是中国高分专项工程中的唯一一颗实现高光谱分辨率的遥感卫星,其中搭载的大气环境红外甚高光谱分辨率探测仪(Atmospheric Infrared Ultra-spectral Sounder,AIUS)是中国第一个星载超高光谱掩星探测载荷,是中国目前光谱分辨率最高的星载傅里叶变换光谱仪。文章基于AIUS的探测原理,以掩星观测路径的能量传输为线索,研究探测仪数据获取链路中各个环节的辐射传输过程,建立了包括大气红外辐射传输仿真和探测器仿真的数字化建模与仿真模型,并对仿真模型进行了精度验证,充分验证了数字仿真模型的有效性和准确性。验证试验结果表明:数字仿真模型具有高精度的数据仿真能力,所有通道仿真数据与实际测量数据相比,相对误差小于2%,数据相似度优于0.99。因此,数字仿真模型能够为"高分五号"卫星大气环境红外甚高光谱分辨率探测仪在轨成像质量预测、指标参数优化和应用能力评价提供重要的数据支撑。  相似文献   

6.
全谱段光谱成像仪是"高分五号"卫星上的一个重要的对地观测有效载荷,具有谱段多、空间分辨率高、辐射定标精度高的特点。载荷设计寿命8年,以60km幅宽、推扫成像方式,获取地球表面0.45~12.5μm谱段范围的辐射数据。可见近红外短波谱段(B1-B6)星下点空间分辨率20m,绝对辐射定标精度5%;中长波红外谱段(B7-B12)星下点空间分辨率40m,绝对辐射定标精度1K(300K时)。该载荷集成度高、技术指标先进,使中国多光谱光学遥感器在谱段数量、空间分辨率、辐射分辨率和辐射定标精度上都有了大幅提升。文章对载荷的方案、技术特点和先进性等进行了介绍,并对后续的应用方向进行了展望。  相似文献   

7.
我国陆地定量遥感卫星技术发展   总被引:1,自引:0,他引:1  
从几何定量与辐射定量两个维度对我国陆地卫星技术发展进行总结与展望。近年我国陆地卫星的空间分辨率、几何定位精度等几何定量能力大幅提高,图像辐射质量明显提升,推动了我国卫星图像在行业的广泛应用。随着空间基础设施等规划逐步落地实施,将进一步补充激光、超光谱、多角度偏振成像等多种遥感探测手段,具备亚纳米级地物光谱与地表空间垂直结构的精确探测能力,提升图像辐射定标与光谱定标精度,促进我国陆地定量遥感卫星技术与应用发展。  相似文献   

8.
正高分五号(GF-5)卫星于2018年5月9日在太原卫星发射中心成功发射。GF-5卫星运行在平均轨道高度705km、倾角98.2o的太阳同步轨道,发射质量约2800kg,整星功率1700W,设计寿命为8年。GF-5卫星配置有6台先进有效载荷,观测谱段覆盖紫外至长波红外,包括:大气环境红外甚高光谱分辨探测仪、大气痕量气体差分吸收光谱仪、全谱段光谱成像仪、大气主要温室  相似文献   

9.
"高分五号"卫星是中国高分重大专项中第一颗高光谱分辨率卫星,共搭载有六台有效载荷,其中大气主要温室气体监测仪是实现CO_2、CH_4等温室气体探测的超光谱专用载荷。该载荷采用新型空间外差光谱技术原理,具有无运动部件分光、超光谱、光通量大等技术特色,是国际上首次实现基于该技术体制研制的温室气体载荷,且完全依托中国现有基础进行自主研制。文章主要介绍了大气主要温室气体监测仪探测原理及方案、在轨工作模式设计,研制过程中突破的一体化干涉仪胶合、星上定标、海洋耀斑观测等多项关键技术。阐述了载荷地面定标及性能验证等工作,对定标及测试数据进行了分析,结果表明该载荷性能已到达了国际同类载荷的先进水平。文章最后还对温室气体后续探测载荷发展提出了一些具体建议。  相似文献   

10.
李叶飞  曹琼  杨勇  董瑶海 《上海航天》2012,29(4):7-13,26
介绍了我国极轨气象卫星的现况。提出了由风云三号(FY-3)上午星、下午星和降水测量卫星组成的我国极轨气象卫星对地观测网构想,给出了三种卫星的主要仪器性能指标。讨论了多载荷综合观测,利用微波波段实现全天候探测,提高光谱分辨率,提高空间分辨率,提高仪器的灵敏度、定标精度,发展无线电(GPS)掩星探测,以及发展主动遥感等极轨气象卫星发展趋势。对我国极轨气象卫星的发展给出了气象卫星向对地综合观测发展、遥感探测技术向"四高两全一多"发展、探测方式向主动与被动结合方向发展、遥感应用向高精度定量化发展、发展专用卫星或小卫星阵列等建议。分析了转动部件与太阳阵耦合抑制、高指向精度高稳定度姿态控制、高数据率数据传输、颤振对高光谱成像质量的影响分析及减振、主动微波及可见、红外、紫外谱段高精度地面及在轨定标等实现我国极轨气象卫星发展的关键技术。  相似文献   

11.
大气环境监测卫星是我国民用空间基础设施中长期发展规划中的科研卫星。本文介绍了搭载于该卫星的新一代紫外高光谱大气成分探测仪,通过发展紫外高光谱大幅宽高分辨超光谱成像技术,使紫外谱段高光谱大气观测空间分辨率提升一倍,大幅提升气态污染物监测能力,取得良好的应用效果。  相似文献   

12.
序言     
正2018年5月9日2时28分,"高分五号"卫星在太原卫星发射中心成功发射,"高分五号"卫星的成功发射是我国"高分辨率对地观测"重大专项全面实现"高空间分辨率、高时间分辨率、高光谱分辨率"三大重要目标的重要里程碑,是又一次大幅度提升我国对地观测能力的重要标志。"高分五号"卫星是我国利用高光谱技术完整实现对固体地球表面、植被生物圈、土壤圈、水圈、大气圈进行全面观测的空间遥感卫星系统,通过对大气污染气体、温室气体、气溶胶等物理要素的监测,填  相似文献   

13.
为了满足定量遥感对海洋水色遥感仪器定标精度定期监测的需求,提出海洋一号(HY-1)C/D卫星在星上配置具备高光谱分辨率与高辐射定标精度的定标光谱仪的设计方法,实现对同一卫星平台载荷设备的交叉定标。根据交叉定标基本原理,给出HY-1C/D卫星在轨实现交叉定标的流程设计,指出星上定标光谱仪作为参考遥感器需要满足的设计要求,并从工程实际角度对在轨交叉定标精度进行了预估。结果表明:在轨同平台交叉定标设计能够有效提升光学遥感器之间的交叉定标精度。  相似文献   

14.
大气环境监测卫星作为国家民用空间基础设施规划中的科研卫星,其遥感应用需求对其载荷的定量化精度要求越来越重要。宽幅成像光谱仪作为大气环境监测卫星中的主要载荷,可获取光谱范围从可见光至长波红外(0.415~12.000 μm)的陆表和大气多光谱信息。采用45°扫描镜配合消旋系统的扫描方式,光路结构采用同轴望远镜系统,实现3个探测器焦面上21个谱段的同时对地的超宽幅高空间分辨率成像。为了准确地获取能量和仪器响应之间的定量关系,在卫星发射前开展宽幅成像光谱仪全光路、全口径辐射定标试验,分别介绍了可见到短波谱段积分球定标技术和中长波谱段热真空红外定标技术,为用户定量应用提供了良好的保障,并对定标过程中传递路径下的误差来源及精度进行分析评估。  相似文献   

15.
HJ-1B卫星红外多光谱相机星上定标精度分析   总被引:1,自引:0,他引:1  
介绍了"环境一号"B(HJ-1B)卫星红外多光谱相机在轨辐射定标的目的以及星上定标的原理,分析了星上定标算法的精度。利用星上零级数据对星上定标系统的测控精度和工作稳定性进行研究,并在此基础上分析了定标数据的处理精度。HJ-1B卫星发射以来共对红外相机热红外通道进行了7次星上定标,为了监测定标系统的精度变化,文章利用MODIS-31、32通道辐亮度对HJ-1B卫星上定标系统精度进行检验,考虑MODIS传感器本身定标的不确定度恒定,分析结果表明自HJ-1B卫星发射以来星上定标系统相对精度发生了衰减。  相似文献   

16.
辐射定标是将卫星传感器的计数值转化为具有物理意义的数值的关键环节。传统的在轨定标方法都是基于一天的数据,定标精度受限于当天的地面测量数据和天气情况。文章提出了一种基于深度学习的在轨定标新方法,其思想是利用定标场地的大量历史卫星影像、历史大气数据和历史光谱数据,通过对这些数据的学习和筛选,构建和真实场景最接近的定标场地模型。利用这一定标场地模型,模拟出待定标卫星成像时刻对应观测几何下的表观反射率,实现传感器的绝对辐射定标。为验证新方法的有效性,分别利用场地定标法、交叉定标法和深度学习定标法对"高分一号"卫星PMS2相机进行在轨辐射定标。结果表明,深度学习定标法的定标精度和场地定标法接近,优于交叉定标方法,且具备交叉定标方法的成本低、频率高、可实现历史数据再定标等优点,是一种比较理想的在轨定标新方法。  相似文献   

17.
高光谱成像仪以其纳米级光谱分辨率可同时获取地物的图像和光谱信息,辐射定标的精度是其定量化应用的关键环节,而偏航定标降低了对定标场地的选择要求,为高光谱成像仪在轨高频次定标提供了支撑。文章提出一种基于卫星平台90°偏航机动的高光谱成像仪在轨偏航定标方法,包括偏航数据的获取及数据处理、分析方法。基于资源一号02D卫星在轨数据对此方法进行了验证,结果表明:该方法对高光谱成像仪的相对辐射校正具有良好的效果,探测器所有像元相对辐射定标精度可达1%,原始图像中的条纹噪声得到很好去除。文章提出的方法可以实现高光谱成像仪的高频次、全视场相对辐射校正,为后续高光谱数据的定量化应用打下基础。  相似文献   

18.
"巴遥一号"卫星作为中国整星出口巴基斯坦的第一颗光学遥感卫星,搭载了两台全色/多光谱高分辨率相机,每台相机全色波段的像元分辨率为1m,多光谱波段(蓝、绿、红及近红外)的像元分辨率为3m。为满足"巴遥一号"卫星双相机绝对辐射定标精度7%(2σ)的指标要求,文章采用基于灰阶靶标的绝对辐射定标方法,在敦煌定标场开展了为期56天的试验,得到了双相机的绝对辐射定标参数,然后进行定标不确定性评估并与基于大面积均匀场反射率法的MODIS结果、基于太阳-漫射板的MODIS星上定标结果进行交叉定标验证。结果表明,文中方法获取的"巴遥一号"卫星双相机定标绝对辐射精度为5.2%(2σ),满足其绝对辐射定标指标要求和定量化应用要求。  相似文献   

19.
正2017年11月15日,高光谱温室气体监测仪在太原卫星发射中心随"风云三号"D星成功发射升空,26日上午,监测仪首次开机工作,成功获取了高品质太阳后向散射精细光谱。高光谱温室气体监测仪由北京空间机电研究所研制,是"风云三号"D星针对当前全球气候变化问题新增的高光谱观测载荷,采用时间调制型干涉分光的技术途径,具有超高光谱分辨率、宽光谱覆盖和高信噪比等多项优秀性能,实现了多个"国内首次"、"国际最高",成为我国高光谱温室气体干  相似文献   

20.
针对中国区域内卫星影像大气校正中气溶胶模型的适用性问题,基于Lorenz-MIE理论,结合多角度偏振相机(DPC)的3个观测通道,分析了中国典型气溶胶模型的光学特性,并将其出现频率较高(>5%)的模型组合用于可见短波红外高光谱相机(AHSI)观测仿真数据的大气校正中。通过对比校正结果,得到如下结论:在大气较为清洁的情况下,适合应用城市污染型与夏季粉煤灰型的模型组合或二次污染型与夏季粉煤灰型的模型组合,对中国区域内卫星影像进行大气校正;在气溶胶光学厚度较大(或能见度较低)时,华北、华南和西北区域内卫星影像大气校正中二次污染型与夏季粉煤灰型的模型组合更为适用,华东区域则是城市污染型与夏季粉煤灰型的模型组合更适合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号