首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Describes the development of a system for inferring the position of uplink ground stations, using existing domestic satellites, with minimal disruption of normal operation. The system uses the differential time delay of a single uplink signal passing through two adjacent spacecraft to infer the relative position of the uplink transmitter. A system for the measurement of such differential time delays is described. Since this technique alone does not provide an unambiguous determination of uplink transmitter location, the use of an interferometer to resolve such ambiguities is discussed  相似文献   

2.
The design and development of a system for inferring the position of terrestrial satellite uplink stations using existing domestic satellites with minimal disruption to normal satellite operation are described. Two methods are presented by which a quantity measured at a terrestrial receiving site is mapped into a curve of possible uplink locations on the Earth's surface. One method involves measuring differential time delays of a single uplink signal observed through two adjacent spacecraft. The other uses a short baseline interferometer composed of the two cross-polarized and spatially separated antenna feeds aboard an affected satellite. A unique location is obtained by using an appropriate combination of the two methods. A system for measurement of the required differential delays and phases and experimental work performed to demonstrate the feasibility of the location methods are described  相似文献   

3.
The Applications Technology Satellite (ATS-6), the most powerful, most sophisticated, most versatile communications satellite flown to date, is the last of NASA's experimental satellites intended to demonstrate major advances in communications and spacecraft technology. It is a multipurpose, multidisciplinary spacecraft whose principal objectives were to demonstrate a large, unfurlable antenna structure and precise pointing and attitude control in the synchronous orbit The spacecraft carries 27 different experiments, 3 of which demonstrate users' applications of satellite communications. Significant advances in antenna technology, precise attitude control, materials technology, spacecraft structures, and thermal control have been successfully demonstrated. The most significant accomplishments of the ATS-6 mission are the demonstration of the practicality of satellite broadcasting to small, simple, inexpensive ground stations and the uses of this potential service in the solution of social problems involving education and health care. The success of these initial demonstrations has led ATS-6 experimenters and potential users to incorporate a Public Service Satellite Consortium dedicated to the provision of satellite broadcasting services for educational and health-care applications.  相似文献   

4.
The Space Interferometry Mission (SIM), performed very accurate astrometric measurements to measure the positions of stars using a 10 m baseline optical interferometer. The lack of signal from the science targets precludes using the star as a feedback signal to control the science interferometer delay line. In order to solve this problem SIM uses pathlength feed forward (PFF) control of the science interferometer. In the case of controlling the science interferometer optical path, the information to position the science delay line comes from a combination of internal metrology, external metrology, and guide interferometer measurements. The accuracy of the internal and external metrology measurements and the guide interferometer measurements are important for the quality of the feed forward signal and also for the ultimate astrometric performance of the instrument. An instrument model of SIM has been built to evaluate optical performance and to emulate various observational scenarios. The effect of averaging methods to reduce metrology cyclic error and the viability of on-orbit calibration maneuvers are studied. The model consists of a real-time dynamics formulation of the spacecraft and a real-time attitude control system. Simulation results investigate the sensitivity of the feed forward signal to the various error sources and time-varying terms.  相似文献   

5.
The ATS-6 is the most advanced experimental satellite that has evolved from the Application Technology Satellite Program conducted and implemented by NASA Goddard Space Flight Center (NASA/GSFC). This project utilizes a state-of-the-art spacecraft and ground terminal network to perform advance studies and to conduct technological demonstrations in a large number of scientific areas. The design and implementation of this unique spacecraft permitted multiple experimentation simultaneously. The control of the spacecraft is performed at ATS Operational Control Center (ATSOCC) located at NASA/GSFC. Experimentation which was performed covered a wide spectrum of communications, technological, meterorological, and scientific subjects. Three principal ground terminals are utilized to assist the experimenters to acquire data. Data reduction and analysis are performed by the many facilities at NASA/GSFC in support of the experimenters.  相似文献   

6.
The Applications Technology Satellite (ATS-6) Millimeter Wave Experiment, developed and implemented by the NASA Goddard Space Flight Center, has provided the first direct measurements of 20-and 30-GHz Earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques In addition to direct measurements on the 20-and 30-GHz links, methods of attenuation prediction with radars, rain gauges, and radiometers were developed and compared with the directly measured attenuation. This paper presents a review of the major results of the first year of measurements with ATS-6, with emphasis on the impact of the measurements on millimeter wave space systems design.  相似文献   

7.
The Applications Technology Satellite-6 (ATS-6) uses a 9l1-r parabolic antenna with high gain to enable communications with simple, low-cost ground stations with 3-m-diameter antennas. The structural system met all of its requirements, deployed properly, and preserved sensor alignment within 0.1 degree. The thermal control system has kept all temperatures within specified limits. The communications subsystem in-orbit performance has also exceeded specifications with high receiver gain-to-temperature ratios and high transmitter El RP. The spacecraft propulsion system performance has been within specifications. The near-perfect geosynchronous orbit achieved by the Titan IIIC resulted in a 8-kg fuel saving which should extend mission life. The attitude and control subsystem is providing the necessary stabilization and accurate slewing control. The electrical power subsystem provided 40 W more than the specified value at the last summer solstice. The telemetry and command subsystem performance has also been nominal.  相似文献   

8.
The Juno Magnetic Field Investigation   总被引:2,自引:0,他引:2  
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ~20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = \(1.6 \times 10^{6}\mbox{ nT}\) per axis) with a resolution of ~0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.  相似文献   

9.
研究了一种星敏感器一陀螺组合定姿方式中的姿态敏感器误差的实时在轨标定方法。首先,选择直观的欧拉角作为姿态描述参数,根据星敏感器和陀螺的测量原理建立星敏感器一陀螺在轨标定的测量方程和状态方程,并以此建立数学模型。其次,采用简单高效的EKF(ExtendedKalmanFilter,扩展卡尔曼滤波)作为估值算法,进行了在轨标定数值仿真。对于航天器姿态定向中出现的姿态角和星敏感器安装角之间的耦合问题,通过在特定姿态通道上施加简单姿态机动实现了解耦。数值结果表明,该实时在轨标定方法,尤其是所提出的姿态角和星敏感器安装角解耦策略,可以实现对航天器姿态的实时精确估计以及对星敏感器安装误差、陀螺常值漂移和相关漂移等误差的实时在轨标定。该方法可用于航天器姿态测量设备的实时在轨标定和航天器姿态的高精度实时确定。  相似文献   

10.
王润  郁丰  周士兵  刘方武 《航空学报》2021,42(2):324298-324298
针对航天器相对导航问题,以空间站表面为"特殊地形",提出一种基于大型航天器表面巡检的相对导航算法。首先,运用巡检飞行器上的TOF (Time of Flight)相机测量空间站表面局部点云数据,以该点云数据为实时图,以空间站表面先验点云数据为基准图。然后,利用3D Zernike矩与三维地形间的一一对应关系,将三维地形匹配转化为基于3D Zernike矩的特征向量匹配。在此基础上求解实时图与匹配上的基准图间的相对位置、相对姿态,从而确定两航天器间的相对导航参数,并通过实验分析了匹配精度及速度的主要影响因素。最后,将该相对导航参数与惯性系统推算的相对导航参数在扩展卡尔曼滤波器的框架下实现信息融合,估计了巡检飞行器与空间站间的相对位置、相对姿态,实验结果表明,相对位置精度优于0.002 m,相对姿态精度优于0.1°。  相似文献   

11.
An experiment is described to validate the concept of developing an autonomous integrated spacecraft navigation system using onboard Global Positioning System (GPS) and inertial navigation system (INS) measurements. Previous work by the authors (1988, 1990) has demonstrated the feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e., improvement in position, velocity and attitude information. An important aspect of this research is the automatic real-time reconfiguration capability of the system, which is designed to respond to changes in a spacecraft mission under the control of an expert system  相似文献   

12.
An airborne system has been developed for charting shallow coastal and inland waters. The primary components of this system are an aerial survey camera, a profiling laser radar, an analytical stereo plotter, and a multisensor track recovery system (TRS). The TRS comprises a gimbaled inertial navigation system and a number of auxiliary sensors which acquire redundant position and attitude information. The sensor data are combined postmission using a U-D factorized Kalman filter and modified Bryson-Frazier smoother to compute accurate estimates of the orientation parameters of the survey camera at the times of film exposure. These parameters are used to position each overlapping pair of photographs on the analytical plotter to form a stereo image and corresonding analytical stereomodel from which water depth measurements are made. Flight trial results demonstrate that the TRS can achieve radial position and attitude accuracies which exceed 1 m and 2 arcmin root mean square (rms), respectively, and that this level of performance is sufficient to enable water depth measurements to be made to an accuracy of better than 0.65 m (rms).  相似文献   

13.
Lohr  D. A.  Zanetti  L. J.  Anderson  B. J.  Potemra  T. A.  Hayes  J. R.  Gold  R. E.  Henshaw  R. M.  Mobley  F. F.  Holland  D. B.  Acuña  M. H.  Scheifele  J. L. 《Space Science Reviews》1997,82(1-2):255-281
The primary objective of the investigation is the search for a body-wide magnetic field of the near Earth asteroid Eros. The Near Earth Asteroid Rendezvous (NEAR) 3-axis fluxgate magnetometer includes a sensor mounted on the high-gain antenna feed structure. The NEAR Magnetic Facility Instrument (MFI) is a joint hardware effort between GSFC and APL. The design and magnetics approach achieved by the NEAR MFI effort entailed low-cost, up-front attention to engineering solutions which did not impact the schedule. The goal of the magnetometer is reliable magnetic field measurements within 5 nT, which necessitates the use of an extensive spacecraft magnetic interference model but is achievable with the full year's orbital data set. Such a goal has been shown viable with recent in-flight calibration data and comparisons to the WIND magnetometer data. The NEAR MFI effort has succeeded in providing magnetic field measurements for the first flight in NASA's Discovery line.  相似文献   

14.
天线组阵能否完全替代大口径天线有一个关键性难题,就是天线阵是否支持上行链路组阵。深空航天器无法将不同地面天线的上行信号对齐,所以上行链路信号的调整必须在地面完成。针对上行组阵发射机相位调整问题,提出一种基于VLBI(Very Long Baseline Interferometry,甚长基线干涉测量)技术的接收模式天线上行组阵标校方案,并对标校精度进行了简要分析。将上行链路时延分解为几何时延和发射系统时延,建立了几何时延模型,通过标定接收时延和发射时延,便可以得到天线阵元间的相位标校值。理论分析结果表明,该方案具有一定的可行性,对上行组阵相位标校的研究具有一定的借鉴意义。  相似文献   

15.
In this paper the problem of uplink array calibration for deep-space communication is considered. A phased array of many modest-size reflectors antennas is used to drastically improve the uplink effective isotropic radiated power of a ground station. A radar calibration procedure for the array phase distribution is presented using a number of in-orbit targets. Design of optimal orbit and the number of calibration targets is investigated for providing frequent calibration opportunities needed for compensating array elements phase center movements as the array tracks a spacecraft. Array far-field focusing based on the near-filed in-orbit (low Earth orbit (LEO)) calibration targets is also presented and array gain degradation analysis based on the position error of the array elements and in-orbit targets has been carried out. It is shown that errors in the in-orbit targets positions significantly degrade the far-field array gain while the errors in array elements positions are not very important. Analysis of phase errors caused by thermal noise, system instability, and atmospheric effects show insignificant array gain degradation by these factors  相似文献   

16.
Accuracy performance of star trackers - a tutorial   总被引:16,自引:0,他引:16  
An autonomous star tracker is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft utilizing star observations. It consists of an electronic camera and associated processing electronics. The processor has the capability to perform star identification utilizing an internal star catalog stored in firmware and to calculate the attitude quaternion autonomously. Relevant parameters and characteristics of an autonomous star tracker are discussed in detail  相似文献   

17.
黄卫权  方涛  王宗义 《航空学报》2020,41(9):323921-323921
综合校正技术可作为抑制格网惯导系统(INS)导航误差的有效手段。加速度计零偏所造成的水平姿态误差是导致综合校正中陀螺漂移估计精度受限的重要因素。针对这一问题,提出了一种改进的无阻尼综合校正方法。首先,推导了格网坐标系框架下估计加速度计零偏和姿态的目标函数;其次,介绍了无阻尼条件下综合校正的两个核心方程;最后设计了无阻尼两点校策略。综合校正前,在多普勒计程仪(DVL)提供的速度辅助下完成加速度计零偏的估计和补偿,以此消除加速度计零偏所造成的水平姿态误差对综合校正中陀螺漂移估计精度的影响。在两次间断的外部位置和航向辅助下通过所设计的综合校正策略完成对陀螺漂移的估计。校正策略中所涉及的水平姿态误差在DVL辅助下由参数估计方法估计得到。仿真及实验结果表明:与现有的研究相比,所设计的综合校正方案进一步减少了DVL的辅助时间,同时由于准确地估计和补偿了加速度计零偏,陀螺漂移的估计精度显著提高,该方案在抑制导航误差方面具备更明显的优势。  相似文献   

18.
The primary objective of the Spacecraft Attitude Precision Pointing and Slewing Adaptive Control (SAPPSAC) Experiment is to establish feasibility and evaluate capabilities of a ground-based spacecraft attitude control system, wherein RF command and telemetry links, together with a ground station on-line minicomputer, perform closed loop attitude control of the Applications Technology Satellite -6 (ATS-6). The ground processor is described, including operational characteristics and the controller software. Attitude maneuvers include precision pointing to fixed targets, slewing between targets, and generation of prescribed ground tracks. Test results show high performance and reliability for over 30 h of on-line control with no serious anomalies. Attitude stabilization relative to a prescribed target has been achieved to better than 0.007° in pitch and roll and 0.020° in yaw for a period of 43 min. Ground tracks were generated which had maximum latitude/longitude deviations less than 0.150 from reference.  相似文献   

19.
无陀螺飞行器姿态和角速度确定   总被引:2,自引:1,他引:2  
程杨  杨涤  崔祜涛 《飞行力学》2001,19(2):34-36,40
通过预测滤波方法研究了利用矢量观测确定无陀螺飞行姿态和角速度的方法。给出的观测滤波法在一定的二次型优化准则下,对飞行器姿态和名义姿态运动模型的等效角速度误差可同时进行实时估计,能够准确跟踪敏感器的测量,有效减小模型误差的影响,数值仿真结果验证了算法的优越性。  相似文献   

20.
采用高精度卫星导航速度、位置信息以及星敏感器提供的姿态信息设计十表冗余捷联惯组的标定模型,包含陀螺和加速度计的零次项和标度因数,对卫星和星敏感器辅助的冗余激光陀螺捷联惯组进行实时在轨标定.利用标准Kalman滤波和Sage-Husa自适应滤波作为估计算法,对十表冗余捷联惯组参数进行在线估计.数值仿真结果表明:参数标定精度均在7%以内,是一种实时的在轨标定方法,满足误差补偿要求.冗余惯组在轨标定方法为航天器高精度定姿和定轨提供了一种理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号