首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
载人深空探测任务的空间环境工程关键问题   总被引:1,自引:0,他引:1       下载免费PDF全文
对载人深空探测过程中将遭受的太阳宇宙射线、银河宇宙射线、微重力、尘与尘暴、深空微生物等环境进行分析。对不同深空环境给航天员带来的威胁进行了探讨。从物理屏蔽防护、辐射风险的监测和预警、辐射防护药物、航天员选拨等角度对采取的措施进行了阐述。从空间辐射对航天员的损伤机理、抗辐射和微重力药物开发、空间辐射屏蔽防护结构与材料、航天服自清洁、抗微生物侵蚀材料的研发等多个角度对需要进一步开展的工作进行了讨论。  相似文献   

2.
Since the beg inning of manned space flight the potentially unique radiobiological properties of the heavy ions of the cosmic radiation had been, apart from possible interactions of radiation effects with biological effects of weightlessness, of major concern with respect to the assessment of radiation hazards in manned space flight. Radiobiological findings obtained from space flight experiments and ground based experiments with densely ionizing radiation are discussed, which suggest qualitative differences between the radiobiological mechanisms of sparsely ionizing and densely ionizing radiation. These findings comprise the observation of a long lateral range of radiobiological effectiveness around tracks of single heavy ions, the observation of micro lesions induced in biological targets by the penetration of heavy ions, the nonadditivity of radiobiological effects from sparsely and densely ionizing radiation, the different kinetics for the expression of late effects induced by sparsely or densely ionizing radiation, and the observation of a reversed dose rate effect for early and late effects induced by densely ionizing radiation. These findings bear on the radiation protection standards to be installed for a general public in manned space flight and on the design of experiments, which intend to contribute to their specification.  相似文献   

3.
在“神舟号”载人飞船工程实现了中国人往返于天地间的目的之后 ,中国应审慎地选择发展载人航天的目标。文章从中国社会对载人航天的需求出发 ,讨论了以开发利用空间微重力物质环境为目标的空间站和以发展天基航天为目标的天基航天站的外部工程系统的环境条件 ,认为中国在运载火箭、发射和回收场、测控站网方面已有较好基础 ,基本具备条件 ,运人运输器已有“神舟号”载人飞船 ,运物运输器的研制也不困难 ,但在为保障航天员在空间生活、工作的航天员系统方面和为实现载人航天工程功能和显现价值的有效载荷系统方面欠缺较多 ,需要一个研究、试验、培训和开发、演示的发展阶段  相似文献   

4.
空间增材制造技术的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
中国空间站旨在进行大量在轨科学实验和空间应用研究,在轨保障是支持空间站在全寿命周期内完成载人航天任务的重要途径.传统地面制造及上行补给方式难以满足较大规模应用的需求,亟需一种创新性的保障模式突破资源瓶颈,空间增材制造技术具有极大的潜力实现即造即用的资源保障模式.本文根据空间增材制造技术的最新研究进展,结合中国空间站和载人深空探测任务需求,对空间增材制造技术的在轨应用模式进行分析,提出了中国空间增材制造技术未来发展所面临的问题和解决途径.   相似文献   

5.
空间站概述     
自1961年世界上第一名航天员上天以来,载人航天技术有了飞速的发展。载人航天器已由初期的小型载人飞船,发展到大型空间站和航天飞机。空间站的诞生,特别是永久性空间站的建立,将会引起人类社会的众多方面发生重大而深刻的变化。本文首先就过去十多年中美国、苏联和欧洲发射的空间站作一简略概括,然后对空间站的构型,用途和未来发展等进行论述。  相似文献   

6.
空间站废水的处理及管理   总被引:5,自引:0,他引:5  
长期载入飞行的空间站需要大量的用水,为解决由此引起的巨大的维持飞行的运行费用,需要实现水的再生与闭路循环,如何针对空间站废水的特征,解决废水的处理与利用问题,并建立合理的水循环体系是这一工作的关键,文中分析,比较了空间站废水的处理方法,设计了空间站水管理整合方案,并多方面探讨和验证这一方案的合理性和可行性。  相似文献   

7.
本文讨论了载人航天器轨道运行阶段的救生技术的发展、栽人航天器轨道运行段救生的方法及特点、并将各种方法的优缺点进行了比较。本文指出:用停靠在空间站上的轨道救生艇直接救生是最佳的空间站轨道救生方式。  相似文献   

8.
In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.  相似文献   

9.
Active shielding for long duration interplanetary manned missions   总被引:1,自引:0,他引:1  
For long duration interplanetary manned missions the protection of astronauts from cosmic radiation is an unavoidable problem that has been considered by many space agencies. In Europe, during 2002–2004, the European Space Agency supported two research programs on this thematic: one was the constitution of a dedicated study group (on the thematic ‘Shielding from cosmic radiation for interplanetary missions: active and passive methods’) in the framework of the ‘life and physical sciences’ report, and the other an industrial study concerning the ‘radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars’. Both programs concluded that, outside the protection of the magnetosphere and in the presence of the most intense and energetic solar events, the protection cannot rely solely on the mechanical structures of the spacecraft, but a temporary shelter must be provided. Because of the limited mass budget, the shelter should be based on the use of superconducting magnetic systems. For long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole mission period. This requires the protection of a large habitat where they could live and work, and not the temporary protection of a small volume shelter. With passive absorbers unable to play any significant role, the use of active shielding is mandatory. The possibilities offered by superconducting magnets are discussed, and recommendations are made about the needed R&D. The technical developments that have occurred in the meanwhile and the evolving panorama of possible near future interplanetary missions, require revising the pioneering studies of the last decades and the adoption of a strategy that considers long lasting human permanence in ‘deep’ space, moreover not only for a relatively small number of dedicated astronauts but also for citizens conducting there ‘normal’ activities.  相似文献   

10.
How human sleep in space--investigations during space flights.   总被引:1,自引:0,他引:1  
Sleep problems have been observed during many of the space flights. The existence of poor quality of sleep, fatigue, insomnia or different alterations in sleep structure, organization and sleep cyclicity have been established. Nevertheless results obtained from investigations of human sleep on board manned space vehicles show that it is possible to keep sleep patterns related to the restorative and adaptive processes. For the first time in the frame of the "Intercosmos" program a multi-channel system for recording and analysis of sleep in space was constructed by scientists of the Bulgarian Academy of Sciences and was installed on board the manned Mir orbiting station. In 1988 during the joint Bulgarian-Russian space flight continues recording of electro-physiological parameters necessary to estimate the sleep stages and sleep organization was made. These investigations were continued in next space flights of different prolongation. The results were compared with the findings obtained under the conditions during the pre- and post-flight periods.  相似文献   

11.
空间站与其它航天器相比,有很多优越性。文内详细地阐述了空间站的四大特征:①先入轨后上人,既提高了安全保障,又简化了研制过程;②具有自主补给消耗品、检修和更换设备的能力;③具有长期航天的素质;④具有可变更和可扩大其功能的性质。这些特征及其优越性,充分体现了空间站在未来载人航天活动中的地位和作用。  相似文献   

12.
Long-term manned exploratory missions are planned for the future. Exposure to high-energy neutrons, protons and high charge and energy particles during a deep space mission, needs protection against the detrimental effects of space radiation. It has been suggested that exposure to unpredictable extremely large solar particle events would kill the astronauts without massive shielding. To reduce this risk to astronauts and to minimize the need for shielding, astronauts with highest significant adaptive responses should be chosen. It has been demonstrated that some humans living in very high natural radiation areas have acquired high adaptive responses to external radiation. Therefore, we suggest that for a deep space mission the adaptive response of all potential crew members be measured and only those with high adaptive response be chosen. We also proclaim that chronic exposure to elevated levels of radiation can considerably decrease radiation susceptibility and better protect astronauts against the unpredictable exposure to sudden and dramatic increase in flux due to solar flares and coronal mass ejections.  相似文献   

13.
With the human space exploration activities, space life science is an emerging interdiscipline, which covers a wide range of researches. Based on our country's manned space station and recoverable satellite science experimental platform, the development of space life science research is very important to acquire new knowledge or new technological innovation, to give further services to the human space exploration activities, to improve the national economic and social development. Both ground-based and flight applied studies were continuously performed in the previous 2 years. Here, we review and summarize the researches on space life sciences contributed by Chinese scientists.   相似文献   

14.
The radiation environment in space is a major concern for human spaceflight because of the adverse effects of high levels of radiation on astronauts’ health. Therefore, it is essential to perform radiation risk assessments already during the concept studies of a manned mission. Galactic Cosmic Rays (GCR) have been identified to be one of the primary sources of radiation exposure in space.  相似文献   

15.
With the human space exploration activities, space life science is an emerging interdisciplinary and it covers a wide range of research. Based on our country's manned space station and recoverable satellite science experimental platform, the development of space life science research is very important to acquire new knowledge or new innovation in technology, to give further services to the human space exploration activities, to improve the national economic and social development. Based on present situation, both theoretical and applied researches were continuously performed in 2015. Here, we review and summarize the researches on space life sciences which were contributed by Chinese scientists.   相似文献   

16.
国外载人航天器故障诊断技术   总被引:2,自引:0,他引:2  
详细介绍了故障诊断技术在国外载人航天器故障诊断中的应用及发展过程,并对专家系统技术进行了重点分析和介绍,国外载人航天器故障诊断经历了60年代简单的状态监测(水星号),70年代的基于算法的诊断(阿波罗),一直到80年代的基于知识的智能诊断(航天飞机),三个阶段,还介绍了NASA为其航天飞机主发动机透平泵和空间站电源系统开发的故障诊断专家系统,并对航天领域故障诊断技术特点进行了综合分析,同时指出了航天领域故障诊断技术的发展趋势。  相似文献   

17.
The Space Environment Prediction Center (SEPC) of the Center for Space Science and Applied Research of the Chinese Academy of Sciences (CSSAR, CAS)took on the mission of offering the space environment parameters which may be of use to the safety of manned spacecraft. In order to complete the space environment safety guarantee mission for SZ-4 and SZ-5, SEPC improved the space environment monitoring system, database system, prediction result display system, prediction implementation system, etc. For guaranteeing the safety of the airship and cosmonaut in the first manned SZ-5, flying experiment mission,SEPC developed the software for analyzing radiation dose and early-warning software for large debris collision with SZ-5. Three months before the flights of SZ-4 and SZ-5, SEPC began to predict the safe launch period in view of the space environment, and offered timely and valid reference opinions for selecting the safety period. Especially during the mission of SZ-5, SEPC analyzed the space high-energy environment in a pre-arranged orbit and abnormal orbit andevaluated the radiation dose which cosmonauts may encounter in space. The evaluation offered an important reference for cosmonaut safety and decisionmaking in the SZ-5 mission. The calculation of the distribution of large debris and the collision risk assessment at different orbit entry times for SZ-5 provided an important base for the superior department to make flight decisions.  相似文献   

18.
19.
有许多因素影响空间站轨道高度的选择,包括:任务要求,辐射环境,微流星和空间垃圾,空间站构型,运载器能力,发射窗口以及空间站的补给要求等。从补给运输系统性能考虑,要求空间站的轨道高度低一些,但是从轨道维持出发,希望空间站轨道高度高一些。该文讨论了补给、轨道维持和太阳活动对轨道高度的影响,给出了空间站的最佳运行高度。文中还以载人飞船和航天飞机为运输系统进行了数值计算,得到的主要结论是空间站的最佳运行高度不是常数,而是随着太阳活动情况和补给频繁次数变化。在太阳活动高年期间,空间站轨道高度应提高。当空间站的补给次数增加时,空间站的最佳运行高度应该下降。  相似文献   

20.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号