首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The centennial anniversary of the discovery of cosmic rays was in 2012. Since this discovery considerable progress has been made on several aspects related to galactic cosmic rays in the heliosphere. It is known that they encounter a turbulent solar wind with an imbedded heliospheric magnetic field when entering the Sun’s domain. This leads to significant global and temporal changes in their intensity inside the heliosphere, a process known as the solar modulation of cosmic rays. The prediction of a charge-sign dependent effect in solar modulation in the late 1970s and the confirmatory observational discoveries can also be considered as a milestone. A short review is given of these predictions based on theoretical and numerical modelling work, the observational confirmation and related issues.  相似文献   

2.
The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1–8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445–448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449–450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003.) is similar to the current Schwadron–Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron–Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445–448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron–Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.  相似文献   

3.
Cosmic ray modulation in the outer heliosphere is discussed from a modeling perspective. Emphasis is on the transport and acceleration of these particles at and beyond the solar wind termination shock in the inner heliosheath region and how this changes over a solar cycle. We will show that by using numerical models, and by comparing results to spacecraft observations, much can be learned about the dependence of cosmic ray modulation on solar cycle changes in the solar wind and heliospheric magnetic field. While the first determines the heliospheric geometry and shock structure, the latter results in a time-dependence of the transport coefficients. Depending on energy, both these effects contribute to cosmic ray intensities in the inner heliosheath changing over a solar cycle.  相似文献   

4.
This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues.  相似文献   

5.
By simulating the trajectories for scatter free and diffusive propagation of relativistic cosmic rays in a model of the heliospheric magnetic fields containing a representation of corotating interaction regions (CIR's) we find that, due to the large gradients associated with these compression regions, the motion is strongly affected and differs substantially from the predictions of current modulation theory. For positive (outward) northern hemisphere polarity particles do not stream purely from high latitudes but can come from almost any latitude in the outer heliosphere; for negative polarity many particles come along the current sheet (as predicted) but a second, equally important, poipulation exists comprising particles that do not start on the current sheet but are brought to low latitudes by their interaction with CIR's. Thus, we conclude that CIR's (and other large scale structures) cannot be ignored in analyses of cosmic ray modulation.  相似文献   

6.
The state of art of ground-based cosmic-ray research from its discovery to present is reviewed. After discovery of cosmic rays by Hess in 1912, the nature of the primary and secondary radiation was established from recordings by a variety of instruments, sensitive to various components of cosmic rays and operated at different latitudes, longitudes and altitudes, including instruments carried by balloons. The IGY formalized international co-operation and coordinated study of cosmic rays, which is vital for meaningful interpretation of cosmic-ray data. Data collected at different geographic locations require an effective cutoff rigidity as a data ordering parameter. This parameter is obtained from tracing trajectories of primary cosmic rays in the Earth’s magnetic field. After 50 years the world’s neutron monitor network remains still the backbone for studying intensity variations of primary cosmic rays in the rigidity ranges between 1 and 15 GV, associated with transport and with transient events. Also the penetrating muon and neutrino components of secondary cosmic rays have a long history of recording and fundamental problem investigations. Valuable data about composition and spectrum of primary cosmic rays in ever increasing high-energy regions have been obtained during the years of investigations with various configurations and types of extensive air shower detectors. The culture of personal involvement of the physicist in carrying out experiments and data acquisition characterized the continued vitality of cosmic-ray investigations ranging from its atmospheric, geomagnetic and heliospheric transport through to its solar and astrophysical origins.  相似文献   

7.
Voyager 1 crossed the solar wind termination shock on December 16, 2004 at a distance of 94 AU from the Sun, to become the first spacecraft to explore the termination shock region and to enter the heliosheath, the final heliospheric frontier. By the end of 2006, Voyager 1 will be at ∼101 AU, with Voyager 2 at ∼81 AU and still approaching the termination shock. Both spacecraft have been observing the modulation of galactic and anomalous cosmic rays since their launch in 1977. The recent observations close to or inside the heliosheath have provided several interesting ‘surprises’ with subsequent theoretical and modeling challenges. Examples are: what does the modulation of galactic cosmic rays amount to in this region?; how do the anomalous cosmic rays get accelerated and modulated?; why are there ‘breaks’ in the power-law slopes of the spectra of accelerated particles? Several numerical models have been applied to most of these topics over the years and comprehensive global predictions have been made the past decade, thought to be based on reasonable assumptions about the termination shock and the heliosheath. Examples of these predictions and assumptions are concisely discussed within the context of the main observed features of cosmic rays in the vicinity of the termination shock, ending with a discussion of some of the issues and challenges to cosmic ray modeling in particular.  相似文献   

8.
We present a new two-dimensional divergence-free heliospheric magnetic field of which the radial component depends on latitudinal gradients in the solar wind speed. It is used in a two-dimensional numerical modulation model to study its qualitative effects on cosmic-ray modulation. We find that this field causes large solar-cycle polarity dependent increases in cosmic-ray intensities at either high or low latitudes and we discuss the reasons for this.  相似文献   

9.
The annual mean sunspot number (SSN) has a minimum value in 2008, while the monthly mean SSN has a value of zero in August 2009. The galactic cosmic ray modulation for cycle 24 began at earth orbit in January 2010. We study the onset characteristics of the new modulation cycle using data from the global network of neutron monitors. They respond to time variations in different segments of the galactic cosmic ray rigidity spectrum. The corresponding temporal variations in the interplanetary magnetic field intensity (B) and solar wind velocity (V) as well as the tilt angle of the heliospheric current sheet are also studied. There is a lag of 3 months between a large, sharp increase of the tilt angle of the heliospheric current sheet and the onset of modulation. Some neutron monitors are undergoing long-term drifts of unknown origin.  相似文献   

10.
Emphasis is placed on predictions of the galactic cosmic-ray flux at high heliographic latitudes. Recent work on gradient and curvature drifts in the large-scale heliospheric magnetic field have modified the traditional argument that the cosmic rays should be essentially unmodulated over the solar poles. In fact, drift effects during the next solar cycle, when the International Solar Polar Mission is to fly, are predicted to cause considerable modulation in the polar regions. However, it is pointed out that the use of conventional drift formulae in the solar wind, which contains magnetic-field fluctuations with large amplitudes and perhaps systematic properties, is highly suspect. Prediction of cosmic-ray behavior over the solar poles is thus currently uncertain. Also considered is the behavior of the anomalous cosmic-ray component at high heliographic latitudes.  相似文献   

11.
The theory of the modulation of galactic cosmic rays by the solar wind is reviewed. The basic transport equation is presented, interpreted and then applied to cosmic-ray transport in a model heliosphere immersed in a constant uniform bath of galactic cosmic rays. The results of numerical modelling are presented and the dominant physical effects analyzed. A variety of observational tests of the model which were reported over the last several years are summarized and shown, generally, to support a model in which particle drifts play an important role. Recent measurements which show that the latitudinal gradient of cosmic rays changed sign in the recent sunspot minimum (relative the last sunspot minimum) are shown to provide additional, strong, support for the model. A new picture of the interplanetary magnetic field is presented, which gives promise of improving considerably the agreement between the theory and observations in the few remaining problem areas.  相似文献   

12.
We have studied the effect of Galactic modulation on cosmic rays entering the Galaxy from outside for two different models for the confinement of cosmic rays, using one dimensional transport equation. From this study, the role of extragalactic cosmic rays has been examined critically in the context of the recent data on antiprotons. We have arrived at the conclusion that they are not a significant source of cosmic ray antiprotons. However, determination of the energy spectrum of Ps at least up to a few tens of GeV would provide information on the modulation of cosmic rays, while entering the Galaxy from outside.  相似文献   

13.
14.
After entering our local astrosphere (called the heliosphere), galactic cosmic rays, as charged particles, are affected by the Sun’s turbulent magnetic field. This causes their intensities to decrease towards the inner heliosphere, a process referred to as modulation. Over the years, cosmic ray modulation has been studied extensively at Earth, utilizing both ground and space based observations. Moreover, modelling cosmic ray modulation and comparing results with observations, insight can be gained into the transport of these particles, as well as offering explanations for observed features. We review some of the most prominent cosmic ray observations made near Earth, how these observations can be modelled and what main insights are gained from this modelling approach. Furthermore, a discussion on drifts, as one of the main modulation processes, are given as well as how drift effects manifest in near Earth observations. We conclude by discussing the contemporary challenges, fuelled by observations, which are presently being investigated. A main challenge is explaining observations made during the past unusual solar minimum.  相似文献   

15.
The long outstanding question of where the heliospheric (solar) modulation of galactic cosmic rays actually begins, in terms of spatial position, as well as at what high kinetic energy, can now be answered. Both answers are possible by using the results of an advanced numerical model, together with appropriate observations. Voyager 1 has been exploring the outskirts of the heliosphere and is presently entering what can be called the very local interstellar medium. It has been generally expected, and accepted, that once the heliopause is crossed, the local interstellar spectrum (LIS) should be measured in situ by the Voyager spacecraft. However, we show that this may not be the case and that modulation effects on galactic cosmic rays can persist well beyond the heliopause. For example, proton observations at 100 MeV close to the heliopause can be lower by ∼25% to 40% than the LIS, depending on solar modulation conditions. It is also illustrated quantitatively that significant solar modulation diminishes above ∼50 GeV at Earth. It is found that cosmic ray observations above this energy contain less that 5%5% solar modulation effects and should therefore reflect the LIS for galactic cosmic rays. Input spectra, in other words the very LIS, for solar modulation models are now constrained by in situ observations and can therefore not any longer be treated arbitrarily. It is also possible for the first time to determine the lower limit of the very LIS from a few MeV/nuc to very high energies.  相似文献   

16.
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal.  相似文献   

17.
The Balloon Borne Experiment with a Superconducting Spectrometer (BESS) has measured the energy spectrum of cosmic-ray antiprotons between 0.18 and 4.20 GeV in eight flights between 1993 and 2002. Above about 1 GeV, models in which antiprotons are secondary products of the interactions of primary cosmic rays with the interstellar gas agree with the BESS antiproton spectrum. Below 1 GeV, the data show a possible excess antiproton flux compared to secondary model predictions, suggesting the presence of an additional source of antiprotons. The antiproton/proton ratios measured between 1993 and 1999, during the Sun’s positive-polarity phase, are consistent with simple models of solar modulation. However, results from the 2000 flight, following the solar magnetic field reversal, show a sudden increase in the antiproton/proton ratio and tend to favor a charge-sign-dependent drift model. To extend BESS measurements to lower energies, an evolutionary instrument, BESS-Polar, is under construction for polar flight in 2004.  相似文献   

18.
Time-dependent cosmic ray modulation is calculated over multiple solar cycles using our well established two-dimensional time-dependent modulation model. Results are compared to Voyager 1, Ulysses and IMP cosmic ray observations to establish compatibility. A time-dependence in the diffusion and drift coefficients, implicitly contained in recent expressions derived by , ,  and , is incorporated into the cosmic ray modulation model. This results in calculations which are compatible with spacecraft observations on a global scale over consecutive solar cycles. This approach compares well to the successful compound approach of Ferreira and Potgieter (2004). For both these approaches the magnetic field magnitude, variance of the field and current sheet tilt angle values observed at Earth are transported time-dependently into the outer heliosphere. However, when results are compared to observations for extreme solar maximum, the computed step-like modulation is not as pronounced as observed. This indicates that some additional merging of these structures into more pronounced modulation barriers along the way is needed.  相似文献   

19.
A comparison of the full IGRF model of the geomagnetic field with two simplified models, the truncated IGRF and the eccentric dipole model, is performed. The simplified models were found to provide a reasonable approximation for the large scale geomagnetic field distribution. In the application of the simplified geomagnetic models to the shielding of cosmic rays in the magnetosphere as quantified via the geomagnetic cut-off rigidity, the eccentric dipole and the truncated IGRF provide a good large scale view. The use of the simplified model does not introduce any additional systematic errors at the global scale but may be a source of moderate uncertainty at the regional scale in the tropical Atlantic region. This study quantitatively validates the use of such simplified geomagnetic models when describing the shielding of cosmic rays in the magnetosphere.  相似文献   

20.
We demonstrate that the general features of the radial and azimuthal components of the anisotropy of galactic cosmic rays can be studied by the harmonic analysis method using data from an individual neutron monitor with cut off rigidity <5 GV. In particular, we study the characteristics of the 27-day (solar rotation period) variations of the galactic cosmic ray intensity and anisotropy, solar wind velocity, interplanetary magnetic field strength and sunspot number. The amplitudes of the 27-day variations of the galactic cosmic ray anisotropy are greater, and the phases more clearly established, in A > 0 polarity periods than in A < 0 polarity periods at times of minimum solar activity. The phases of the 27-day variations of the galactic cosmic rays intensity and anisotropy are opposite with respect to the similar changes of the solar wind velocity in A > 0 polarity periods. No significant dependence of the amplitude of the 27-day variation of the galactic cosmic ray anisotropy on the tilt angle of the heliospheric neutral sheet is found. Daily epicyclegrams obtained by Chree’s method show that the 27-day variations of the galactic cosmic ray anisotropy during A > 0 polarity periods follow elliptical paths with the major axes oriented approximately along the interplanetary magnetic field. The paths are more irregular during A < 0 polarity periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号