首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial distributions of galactic and anomalous cosmic rays in the heliosphere at the solar minima of Cycles 20/22 (qA > 0) and of Cycle 21 (qA < 0) are studied, using data from IMP 8, Voyagers 1/2 and Pioneer 10. It is found that the radial dependences of intensities J can be approximated by a power of radial distance r as J  rα with a different value of a constant in the inner and outer heliosphere with a transition at a radial distance of 10–15 AU. To study the physical meaning of these radial intensity profiles we examined the rigidity dependences of the intensity gradients by determining the particle mean free paths, using a simple one-dimensional modulation model. The particle mean free path λ was assumed to be a separable function of distance of the form rγ and rigidity R of Rδ over the range of 0.5–3.0 GV in the inner and outer heliosphere. It was shown that λ of rigidity dependence of R1.6 determined for Cycle 20/22 (qA > 0) with anomalous He is about 4–5 times larger than that of Cycle 21 (qA < 0) with R0.9 at around 1 GV in the outer heliosphere, and that the radial dependences are r1.4 and r1.1, respectively, for Cycles 20/22 and for Cycle 21.  相似文献   

2.
The average amplitude of the 27-day variation of the galactic cosmic ray anisotropy calculated based on the neutron monitors experimental data is larger in the qA > 0 period than in the qA < 0 period of solar magnetic cycle. The amplitudes of the 27-day variation of the galactic cosmic rays anisotropy do not depend on the tilt angles of the heliospheric neutral sheet for different the qA > 0 and the qA < 0 periods of solar magnetic cycle. A good correlation has been revealed between the changes of the amplitudes of the 27-day variations of the galactic cosmic ray anisotropy and intensity versus the qA > 0 and the qA < 0 periods of solar magnetic cycle.  相似文献   

3.
We present measurements of the thermal conductivity λ(t, P, L) = l/ρ(t, P, L) near the superfluid transition of 4He at saturated vapor pressure and confined in cylindrical geometries with radii L = 0.5 and 1.0 μm (t  T/Tλ(P)  1). For L = 1.0 μm measurements at six pressures P are presented. At and above Tλ the data are consistent with a universal scaling function F(X) = (L/ξo)x/ν(ρ/ρ0), X = (L/ξo)1/νt valid for all P (ρ0 and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity ρ(t, P, ∞) = ρ0tx and ξ = ξ0tν is the correlation length). Indications of breakdown of scaling and universality are observed below Tλ.  相似文献   

4.
In this review I discuss the various γ-ray emission lines that can be expected and, in some cases have been observed, from radioactive explosive nucleosynthesis products. The most important γ-ray lines result from the decay chains of 56Ni, 57Ni, and 44Ti. 56Ni is the prime explosive nucleosynthesis product of Type Ia supernovae, and its decay determines to a large extent the Type Ia light curves. 56Ni is also a product of core-collapse supernovae, and in fact, γ-ray line emission from its daughter product, 56Co, has been detected from SN1987A by several instruments. The early occurrence of this emission was surprising and indicates that some fraction of 56Ni, which is synthesized in the innermost supernova layers, must have mixed with the outermost supernova ejecta.Special attention is given to the γ-ray line emission of the decay chain of 44Ti (44Ti  44Sc  44Ca), which is accompanied by line emission at 68, 78, and 1157 keV. As the decay time of 44Ti is ∼86 yr, one expects this line emission from young supernova remnants. Although the 44Ti yield (typically 10−5–10−4M) is not very high, its production is very sensitive to the energetics and asymmetries of the supernova explosion, and to the mass cut, which defines the mass of the stellar remnant. This makes 44Ti an ideal tool to study the inner layers of the supernova explosion. This is of particular interest in light of observational evidence for asymmetric supernova explosions.The γ-ray line emission from 44Ti has so far only been detected from the supernova remnant Cas A. I discuss these detections, which were made by COMPTEL (the 1157 keV line) and BeppoSAX (the 68 and 78 keV lines), which, combined, give a flux of (2.6 ± 0.4 ± 0.5) × 10−5 ph cm−2 s−1 per line, suggesting a 44Ti yield of (1.5 ± 1.0) × 10−4M. Moreover, I present some preliminary results of Cas A observations by INTEGRAL, which so far has yielded a 3σ detection of the 68 keV line with the ISGRI instrument with a flux that is consistent with the BeppoSAX detections. Future observations by INTEGRAL-ISGRI will be able to constrain the continuum flux above 90 keV, as the uncertainty about the continuum shape, is the main source of systematic error for the 68 and 78 keV line flux measurements. Moreover, with the INTEGRAL-SPI instrument it will be possible to measure or constrain the line broadening of the 1157 keV line. A preliminary analysis of the available data indicates that narrow line emission (i.e., Δv < 1000 km s−1) can be almost excluded at the 2σ level, for an assumed line flux of 1.9 × 10−5 ph cm−2 s−1.  相似文献   

5.
The hysteresis effect for small energies of galactic cosmic rays is due to two effects. The first is the same as for neutron monitor energies – the delay of the interplanetary processes responsible for cosmic ray modulation with respect to the initiating solar processes, according to the effective velocity of solar wind and shock waves propagation. Then, the observed cosmic ray intensity is connected to the solar activity variations during many months before the time of cosmic ray measurement. The second is caused by the time delay of small energy cosmic ray diffusion from the boundary of modulation region to the Earth’s orbit. The model describing the connection between solar activity variation and cosmic ray convection–diffusion global modulation for neutron monitor energies is here developed by taking into account also the time-lag of the small energy particle diffusion in the Heliosphere. We use theoretical results on drifts and analytically approximate the dependences of drifts from tilt angle, and take into account the dependence from the sign of primary particles, and from the sign of polar magnetic field (A > 0 or A < 0). The obtained results are applied on proton and alpha-particle satellite data. We analyze satellite 5-min data of proton fluxes with energies >1 MeV, >2 MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >60 MeV, >100 MeV, and in intervals 10–30 MeV, 30–60 MeV, and 60–100 MeV during January 1986–December 1999. We exclude periods with great cosmic ray increases caused by particle acceleration in solar flare events. Then, we determine monthly averaged fluxes, as well as 5-month and 11-month smoothed data. We analyze also satellite 5-min data on alpha-particle fluxes in the energy intervals 60-160 MeV, 160–260 MeV and 330–500 MeV during January 1986–May 2000. We correct observation data for drifts and then compare with what is expected according to the convection–diffusion mechanism. We assume different dimensions of the modulation region (by the time propagation X0 of solar wind from the Sun to the boundary of modulation region), for X0 values from 1 to 60 average months, by one-month steps. For each value of X0 we determine the correlation coefficient between variations of expected and observed cosmic ray intensities (the estimation of cosmic ray intensities values is given in Section 3 by Eq. (9), and the determination of correlation and regression coefficients in Section 3 by Eq. (8)). The dimension of modulation region is determined by the value of X0 max, for which the correlation coefficient reaches the maximum value. Then the effective radial diffusion coefficient and residual modulation in small energy region can be estimated.  相似文献   

6.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

7.
Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. It was shown that the reacceleration models designed to match secondary to primary nuclei ratios (e.g., B/C) produce too few antiprotons. In the present paper, we discuss one possibility to overcome these difficulties. Using the measured antiproton flux and B/C ratio to fix the diffusion coefficient, we show that the spectra of primary nuclei as measured in the heliosphere may contain a fresh local “unprocessed” component at low energies perhaps associated with the Local Bubble, thus decreasing the measured secondary to primary nuclei ratio. The independent evidence for SN activity in the solar vicinity in the last few Myr supports this idea. The model reproduces antiprotons, B/C ratio, and elemental abundances up to Ni (Z  28). Calculated isotopic distributions of Be and B are in perfect agreement with CR data. The abundances of three “radioactive clock” isotopes in CR, 10Be, 26Al, 36Cl, are all consistent and indicate a halo size zh  4 kpc based on the most accurate data taken by the ACE spacecraft.  相似文献   

8.
Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ  0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05–0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ  0.5 from one side, and ground-based observations in the UV–visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.  相似文献   

9.
The instability in the cosmic-ray precursor of a supernova shock is studied. The level of turbulence in this region determines the maximum energy of accelerated particles. The consideration is not limited by the case of weak turbulence. It is assumed that the Kolmogorov type nonlinear wave interactions together with the ion-neutral collisions restrict the amplitude of random magnetic field. As a result, the maximum energy of accelerated particles strongly depends on the age of a SNR. The average spectrum of cosmic rays injected in the interstellar medium in the course of adiabatic SNR evolution takes the approximate form E−2 at energies larger than 10–30 GeV/nucleon with the maximum energy that is close to the position of the knee in cosmic-ray spectrum at 4 × 1015 eV. At an earlier stage of SNR evolution – the ejecta-dominated stage, the particles are accelerated to higher energies and have a rather steep power-law distribution. These results suggest that the knee may mark the transition from the ejecta-dominated to the adiabatic evolution of SNR shocks which accelerate cosmic rays.  相似文献   

10.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

11.
Following a feasibility study in 2000–2001 on using the EISCAT ionospheric research radars to detect centimetre-sized space debris in the frame of an ESA contract, we are now finishing a continuation study, aimed at achieving debris detection and parameter estimation in real-time. A requirement is to “piggy-back” space debris measurements on top of EISCAT’s normal ionospheric work, without interfering with that work, and to be able to handle about 500 h of measurements per year. We use a special digital receiver back-end in parallel with EISCAT’s standard receiver. We sample fast enough to correctly band-pass sample the EISCAT analog frequency band. To increase detection sensitivity, we use coherent pulse-to-pulse integration. The coherent integration is built-in in our method of parameter estimation, which we call the match function (MF) method. The method is derived from Bayesian statistical inversion, but reduces, with standard assumptions about noise and prior, to minimizing the least squares norm ∥z(t)  (R,v,a;t)∥, where z is the measured signal and {} is a set of model signals. Because the model signals depend linearly on the amplitude b, it is sufficient to maximize the magnitude of the inner product (cross correlation) between z and χ, the amplitude estimate is then determined by direct computation. The magnitude of the inner product, when properly normalized, is the MF. To construct the set of model signals, we sample the EISCAT transmission, in the same way as we sample the received signal, and apply linearly changing Doppler-shifts to it. Our initial implementation of the MF-method in 2001 was about four orders of magnitude too slow for real-time applications, but we have now gained the required speed factors. A factor of ten comes from using faster computers, another factor of ten comes from coding our key algorithms in C instead of Matlab. The largest factor, typically 100–300, comes from using a special, approximative, but in practice quite sufficient, method of finding the MF maximum. Test measurements show that we get real-time speed already when using a single dual-processor 2 GHz G5 Macintosh to do the detection computations.  相似文献   

12.
Fluorescence detectors of ultra high energy cosmic rays (UHECR) allow to record not only the extensive air showers, initiated by the UHECR particles, but also to detect light, produced by meteors and by the fast dust grains. It is shown that the fluorescence detector operated at the mountain site can register signals from meteors with kinetic energy threshold of about 25 J (meteor mass  5 × 10−6 g, velocity  3 × 106 cm/s). The same detector might be used for recording of the dust grains of smaller mass (of about 10−10 g) but with velocity 109 cm/s, close to the light velocity (sub-relativistic dust grains). The light signal from a sub-relativistic dust grain is expected in much shorter time scale (∼0.001 s), in comparison with the meteor signal (∼0.1–1 s), and much longer than duration of the UHECR signals (tens of μs). The fluorescence detector capable to register various phenomena: from meteors to UHECR – should have a variable pixel and selecting system integration time. A study of the new phenomenon of sub-relativistic grains will help to understand the mechanism of particle and dust grain acceleration in astrophysical objects (in SN explosions, for example).  相似文献   

13.
Hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of the October 29, 2003 GOES X10 two-ribbon flare are used together with magnetic field observations from the Michelson Doppler Imager (MDI) onboard SoHO to compare footpoint motions with predictions from magnetic reconnection models. The temporal variations of the velocity v of the hard X-ray footpoint motions and the photospheric magnetic field strength B in footpoints are investigated. The underlying photospheric magnetic field strength is generally higher (B  700–1200 G) in the slower moving (v  20–50 km s−1) western footpoint than in the faster (v  20–100 km s−1) moving eastern source (∼100–600 G). Furthermore, a rough temporal correlation between the HXR flux and the product vB2 is observed.  相似文献   

14.
The source of galactic cosmic rays (GCR) remains unknown, despite many decades of research. It is generally accepted among high-energy astrophysicists that GCR are accelerated by supernova (SN) shocks in the interstellar medium, but the evidence for this remains indirect. However, the fact that the cosmic-ray spectrum continues far past the limit of SN shock acceleration is a serious problem for this model. Most SNae occur in superbubbles – regions of the interstellar medium containing massive stars and SN remnants. Thus, SNae should be accelerating the ejecta of other SNae. The local medium of the superbubble will be enhanced in freshly synthesized R-process material. We are currently developing the R-process Isotope Observer (RIO), which could make the first measurements of the isotopic abundances of the “ultraheavy” GCR (those in the range 32  Z  42) in order to determine the fractional contribution of freshly synthesized R-process material in GCR through the measurement of several key isotopic ratios. We have recently performed a series of tests of the RIO detector with 400 A MeV 84Kr at the HIMAC accelerator in Japan. The results of these tests indicate that a mass resolution of ∼0.3 u can be achieved with RIO. We also discuss the prospects for accommodation of the RIO mission.  相似文献   

15.
The M1.5-class flare and associated coronal mass ejection (CME) of 16 February 2011 was observed with the Extreme ultraviolet Imaging Spectrometer on board the Hinode spacecraft. Spray plasma associated with the CME is found to exhibit a Doppler blue-shift of 850 km s?1 – one of the largest values reported from spectroscopy of the solar disk and inner corona. The observation is unusual in that the emission line (Fe xii 193.51 Å) is not observed directly, but the Doppler shift is so large that the blue-shifted component appears in a wavelength window at 192.82 Å, intended to observe lines of O v, Fe xi and Ca xvii. The Fe xii 195.12 Å emission line is used as a proxy for the rest component of 193.51 Å. The observation highlights the risks of using narrow wavelength windows for spectrometer observations when observing highly-dynamic solar phenomena. The consequences of large Doppler shifts for ultraviolet solar spectrometers, including the upcoming Multi-slit Solar Explorer (MUSE) mission, are discussed.  相似文献   

16.
The absence of a supernova remnant (SNR) shell surrounding the Crab and other plerions (pulsar wind nebulae) has been a mystery for three decades. G21.5-0.9 is a particularly intriguing plerionic SNR in which the central powering engine is not yet detected. Early CHANDRA observations revealed a faint extended X-ray halo which was suggested to be associated with the SNR shell; however its spectrum was non-thermal, unlike what is expected from an SNR shell. On the other hand, a plerionic origin to the halo is problematic since the X-ray plerion would be larger than the radio plerion. We present here our analysis of an integrated 245 ks of archival CHANDRA data acquired with the High-Resolution Camera (HRC) and 520 ks acquired with the Advanced CCD Imaging Spectrometer (ACIS). This study provides the deepest and highest resolution images obtained to date. The resulting images reveal for the first time: (1) a limb-brightened morphology in the eastern section of the halo, and (2) a rich structure in the inner (40″-radius) bright plerion including wisps and a double-lobed morphology with an axis of symmetry running in the northwest–southeast direction. Our spatially resolved spectroscopic study of the ACIS-I data indicates that the photon index steepens with increasing distance from the central point source out to a radius of 40″ then becomes constant at ∼2.4 in the X-ray halo (for a column density NH = 2.2 × 1022 cm−2). No line emission was found from the eastern limb; however marginal evidence for line emission in the halo’s northern knots was found. This study illustrates the need for deep CHANDRA observations to reveal the missing SNR material in Crab-like plerions.  相似文献   

17.
Novel measurements of the seasonal variability in mesospheric temperature at low-latitudes have been obtained from Maui, Hawaii (20.8°N, 156.2°W) during a 25-month period from October 2001 to January 2004. Independent observations of the OH (6, 2) Meinel band (peak height ∼87 km) and the O2 (0–1) atmospheric band emission (∼94 km) were made using the CEDAR Mesospheric Temperature Mapper. The data revealed a coherent oscillation in emission intensity and rotational temperature with a well-defined periodicity of 181 ± 7 days. The amplitude of this oscillation was determined to be ∼5–6 K in temperature and ∼8–9% in intensity for both the OH and O2 data sets. In addition, a strong asymmetry in the shape of the oscillation was also observed with the spring maximum significantly larger than the fall peak. These data provide new evidence in support of a semi-annual-oscillation in mesospheric temperature (and airglow emission intensities) and help quantify its seasonal characteristics.  相似文献   

18.
The detection of a soft thermal X-ray component in the spectrum of a bright knot in the halo of the plerion G21.5-0.9 is reported. Using a collisional ionization equilibrium model for an hot optically thin plasma, a temperature of kT 0.12–0.24 keV, a mass of 0.3–1.0 M and a density of 1.6–6 cm−3 is derived. The spectral analysis suggests a possible overabundance of Silicon with respect to the solar value in the knot; if this will be confirmed this object may be a clump of shocked ejecta.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号