首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PSR J0537−6910 is a young, energetic, rotation-powered X-ray pulsar with a spin period of 16 ms located in the Large Magellanic Cloud. We have searched for previously undetected radio pulsations (both giant and standard) from this pulsar in a 12-h observation taken at 1400 MHz with the Parkes 64-m radio telescope. The very large value of the magnetic field at the light cylinder radius suggests that this pulsar might be emitting giant radio pulses like those seen in other pulsars with similar field strengths. No radio emission of either kind was detected from the pulsar, and we have established an upper limit of ∼25 mJy kpc2 for the average 1400-MHz radio luminosity of PSR J0537−6910. The 5σ single-pulse detection threshold was ∼750 mJy for a single 80-μs sample. These limits are likely to be the best obtainable until searches with greatly improved sensitivity can be made with next-generation radio instruments.  相似文献   

2.
An East–West one-dimensional radio interferometer array consisting of 5 parabolic dish antennas has been set-up at Cachoeira Paulista, Brazil (Longitude: 45°0′20″W, Latitude: 22°41′19″S) for observations of Sun and some of the strong sidereal sources by the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. This is Phase-1 of the proposed Brazilian Decimetre Array (BDA) and can be operated at any frequency in the range 1.2–1.7 GHz. The instrument is functional since November 2004 onwards at 1.6 GHz. The angular and temporal resolution at the above frequency range are ∼3′ and 100 ms, respectively. We present here the initial solar observations carried out with this array.  相似文献   

3.
The absence of a supernova remnant (SNR) shell surrounding the Crab and other plerions (pulsar wind nebulae) has been a mystery for three decades. G21.5-0.9 is a particularly intriguing plerionic SNR in which the central powering engine is not yet detected. Early CHANDRA observations revealed a faint extended X-ray halo which was suggested to be associated with the SNR shell; however its spectrum was non-thermal, unlike what is expected from an SNR shell. On the other hand, a plerionic origin to the halo is problematic since the X-ray plerion would be larger than the radio plerion. We present here our analysis of an integrated 245 ks of archival CHANDRA data acquired with the High-Resolution Camera (HRC) and 520 ks acquired with the Advanced CCD Imaging Spectrometer (ACIS). This study provides the deepest and highest resolution images obtained to date. The resulting images reveal for the first time: (1) a limb-brightened morphology in the eastern section of the halo, and (2) a rich structure in the inner (40″-radius) bright plerion including wisps and a double-lobed morphology with an axis of symmetry running in the northwest–southeast direction. Our spatially resolved spectroscopic study of the ACIS-I data indicates that the photon index steepens with increasing distance from the central point source out to a radius of 40″ then becomes constant at ∼2.4 in the X-ray halo (for a column density NH = 2.2 × 1022 cm−2). No line emission was found from the eastern limb; however marginal evidence for line emission in the halo’s northern knots was found. This study illustrates the need for deep CHANDRA observations to reveal the missing SNR material in Crab-like plerions.  相似文献   

4.
We present the analysis of the radio observations of December 1, 2004 from 07:00 UT to 07:40 UT in the 1.100–1.340 GHz band by Solar Broadband Radio Dynamic Spectrometer (SBRS) in Huairou Station. There are three groups of radio fine structures during the impulsive phase of this flare denoted by N1, Z2, and Z3. N1 has several emission lines with mixed fast and slow frequency drift rate which may reflect the conditions of flare loop and fast flows out from reconnection site; Z2 and Z3 are zebra patterns. The radio observations combined with hard X-ray and other observations show that the fine structures are connected with energetic particles. The information about magnetic field and energetic particle during the burst are also estimated based on our model.  相似文献   

5.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

6.
The recent detection of a young pulsar powering “the Mouse”, G359.23  0.82, as well as detailed imaging of surrounding nebular X-ray emission, have motivated us to investigate the structural details and polarization characteristics of the radio emission from this axisymmetric source with a supersonic bow shock. Using polarization data at 3.6 and 6 cm, we find that the magnetic field wraps around the bow-shock structure near the apex of the system, but downnstream runs parallel to the inferred direction of the pulsar’s motion. The rotation measure (RM) distribution of the Mouse also suggests that the low degree of polarization combined with a high RM ahead of the pulsar result from internal plasma within the bow-shock region. In addition, using sub-arcsecond radio image of the Mouse, we identify modulations in the brightness distribution of the Mouse that may be associated with the unshocked pulsar wind behind the pulsar. Lastly, we discuss the relationship between the Mouse and its neighboring shell-type supernova remnant G359.1  0.5 and argue that these two sources could potentially have the same origin.  相似文献   

7.
We examine recent supernovae which have been observed with very-long-baseline interferometry in order to detect or limit the emission from a possible compact remnant of the explosion. Such a remnant could be a neutron star, generating a pulsar wind nebula, or a black hole with an accretion disk and jets. Four supernovae, and also more than a dozen supernovae or their young remnants in M82, have structure sufficiently resolved to allow useful conclusions as to the strength of the emission from such young neutron stars or black holes. We recently discovered a compact component in the center of SN 1986J’s shell with a spectral luminosity at 15 GHz 200 times that of the Crab Nebula. This is most likely the compact remnant of the explosion, the first and only one found in any modern supernova. For other modern supernovae, the upper limits on the radio spectral luminosities of such young compact remnants range from 180 times that of the Crab Nebula for SN 1979C in M100 in the Virgo cluster to 0.001 times that of the Crab Nebula for SN 1987A in the Large Magellanic Cloud.  相似文献   

8.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

9.
We analyse the 30 October, 2004, X1.2/SF solar event that occurred in AR 10691 (N13 W18) at around 11:44 UT. Observations at 212 and 405 GHz of the Solar Submillimeter Telescope (SST), with high time resolution (5 ms), show an intense impulsive burst followed by a long-lasting thermal phase. EUV images from the Extreme Ultraviolet Imaging Telescope (SOHO/EIT) are used to identify the possible emitting sources. Data from the Radio Solar Telescope Network (RSTN) complement our spectral observations below 15 GHz. During the impulsive phase the turnover frequency is above 15.4 GHz. The long-lasting phase is analysed in terms of thermal emission and compared with GOES observations. From the ratio between the two GOES soft X-ray bands, we derive the temperature and emission measure, which is used to estimate the free-free submillimeter flux density. Good temporal agreement is found between the estimated and observed profiles, however the former is larger than the latter.  相似文献   

10.
We formulate the global propagation model of cosmic-ray electrons including the source region, which is currently considered to be supernova remnants (SNRs). The model is characterized by the escape rate of electrons from SNRs into the interstellar space. It becomes clear that the energy index of the escape rate influences the high energy side of the interstellar spectrum and makes it possible to explain the observed data up to 2 TeV in the case of source spectral index smaller than 2.2 that is expected from the radio spectrum in SNRs. The escape lifetime of electrons in SNRs is also discussed by using the ratio of the radio flux in two regions: SNRs and the Galaxy. The result shows the mean lifetime in SNRs of ∼104 yr around 1 GeV, which corresponds to the SNR age in the Sedov phase.  相似文献   

11.
We present the results of the first observations of the solar microwave burst with fine spectral structure of zebra type at the frequency about 5.7 GHz. The burst has been detected simultaneously by the Siberian Solar Radio Telescope and by the spectropolarimeter of the National Astronomical Observatory of China. Zebra pattern consisted of three parallel stripes with complex frequency drift. The degree of circular polarization of emission reached 100%, the polarization sense corresponded to the extraordinary wave (X-mode). We have determined the plasma parameters in the emission source: plasma density about 1011 cm−3, magnetic field strength 60–80 G. We argue that in the given event the most probable mechanism of the zebra pattern generation is non-linear coupling of harmonics of Bernstein modes.  相似文献   

12.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

13.
Magnetic reconnection occurs during eruptive processes (flares, CMEs) in the solar corona. This leads to a change of magnetic connectivity. Nonthermal electrons propagate along the coronal magnetic field thereby exciting dm- and m-wave radio burst emission after acceleration during reconnection or other energy release processes in heights of some Mm to ⩾700 Mm. We summarize the results of some case studies which can be interpreted as radio evidence of magnetic reconnection: under certain conditions, simple spectral structures (pulsation pulses, reverse drift bursts) are formed by simultaneously acting but widely spaced radio sources. Narrowband spikes are emitted as a side-effect during large-scale coronal loop collisions. In dynamic radio spectra, the lower fast mode shock formed in the reconnection outflow appears as type II burst-like but nondrifting emission lane. It has been several times observed at the harmonic mode of the local plasma frequency between 250 and 500 MHz and at heights of ≈200 Mm.  相似文献   

14.
A complex radio burst associated with periodic (∼1 and 6 min) pulsations and several kinds fine structures, e.g., normal- and reverse-drifting type III bursts, zebra patterns, and slowly drifting structure was observed with the radio spectrometers (1.0–2.0, 2.6–3.8, 5.2–7.6, and 0.65–1.5 GHz) at the National Astronomical Observatories of China (NAOC) in Beijing and Yunnan on 19 October 2001. In combination with the images of 17 and 34 GHz from NoRH and the magnetograms from MDI we reveal the existence and evolution of preexisting and new emerging sources, and find the horseshoe-shaped structure of microwave sources intensity during the late phase of the burst. Through the detailed comparison of the evolution of each source with the time profiles of radio bursts corresponding to these sources we indicate that the intimate correlation between the microwave sources evolution and the generation of the radio burst associated fine structures. Some fine structures can be considered as the MHD turbulence and plasma emission mechanism, based on the anisotropic beam instability and hybrid waves generations. From the characteristics of observations we may presume that the coronal magnetic structures should contain an extended coronal loop system and multiple discrete electrons acceleration/injection sites. The mechanisms of this complex radio burst are deal with the incoherent gyrosynchrotron emission from the trapped electrons and the coherent plasma emission from the non trapped electrons.  相似文献   

15.
An occulted solar flare occurred at about 06:07 UT on 2002, November 2. The RHESSI X-ray images show two separate parts. The lower part consists of a complete loop and the upper part a coronal source which well extends above the solar limb. The loop source shrank for about 3 min with a speed of ∼24 km s−1 during the early impulsive phase and then expanded at ∼7 km s−1, while the coronal source presented an upward motion at about 6 km s−1. We obtained the temperature map of the loop source from RHESSI image spectrum. The temperature of the loop increases with altitude, indicating that the reconnection X-point of this flare is located above the loop source. However, the apparent coronal source is the top of another independent large-scale loop.  相似文献   

16.
Recent Chandra and XMM-Newton observations reported evidence of two X-ray filaments G359.88−0.08 (SgrA-E) and G359.54+0.18 (the ripple filament) near the Galactic center. The X-ray emission from these filaments has a nonthermal spectrum and coincides with synchrotron emitting radio sources. Here, we report the detection of a new X-ray feature coincident with a radio filament G359.90−0.06 (SgrA-F) and show more detailed VLA, Chandra and BIMA observations of the radio and X-ray filaments. In particular, we show that radio emission from the nonthermal filaments G359.90−0.06 (SgrA-F) and G359.54+0.18 (the ripple) has a steep spectrum whereas G359.88−0.08 (SgrA-E) has a flat spectrum. The X-ray emission from both these sources could be due to synchrotron radiation. However, given that the 20 km s−1 molecular cloud, with its intense 1.2 mm dust emission, lies in the vicinity of SgrA-F, it is possible that the X-rays could be produced by inverse Compton scattering of far-infrared photons from dust by the relativistic electrons responsible for the radio synchrotron emission. The production of X-ray emission from ICS allows an estimate of the magnetic field strength of 0.08 mG within the nonthermal filament. This should be an important parameter for any models of the Galactic center nonthermal filaments.  相似文献   

17.
Novel measurements of the seasonal variability in mesospheric temperature at low-latitudes have been obtained from Maui, Hawaii (20.8°N, 156.2°W) during a 25-month period from October 2001 to January 2004. Independent observations of the OH (6, 2) Meinel band (peak height ∼87 km) and the O2 (0–1) atmospheric band emission (∼94 km) were made using the CEDAR Mesospheric Temperature Mapper. The data revealed a coherent oscillation in emission intensity and rotational temperature with a well-defined periodicity of 181 ± 7 days. The amplitude of this oscillation was determined to be ∼5–6 K in temperature and ∼8–9% in intensity for both the OH and O2 data sets. In addition, a strong asymmetry in the shape of the oscillation was also observed with the spring maximum significantly larger than the fall peak. These data provide new evidence in support of a semi-annual-oscillation in mesospheric temperature (and airglow emission intensities) and help quantify its seasonal characteristics.  相似文献   

18.
Equilibrium models of diffuse interstellar material (ISM) near the Sun show a range of cloud densities, ionization, and temperatures which are consistent with data, although the local ISM must be inhomogeneous over ∼2 pc scales. The ISM close to the Sun has properties that are consistent with the sheetlike warm neutral (and partially ionized) gas detected in the Arecibo Millennium Survey. Local interstellar magnetic fields are poorly understood, but data showing weak polarization for nearby stars indicate dust may be trapped in fields or currents in the heliosheath nose region. Implications of this dust capture are widespread, and may impact the interpretation of the cosmic microwave background data. Observations of interstellar H0 inside of the solar system between 1975 and 2000 do not suggest any variation in the properties or structure of local interstellar H0 over distance scales of ∼750 AU to within the uncertainties.  相似文献   

19.
We present the results of a preliminary spectral analysis performed on the BeppoSAX and XMM observations of the Vela plerion. The broad energy range covered by the instruments on board the two observatories allows an evaluation of the spectral parameters of the high energy emission model and provides an indication on the morphology of the source emission above 10 keV. We confirm the softening of the PWN spectrum (3–10 keV band) at distances greater than 4′ from the pulsar and estimate the diameter of the high energy (>10 keV) emission region to be on the order of 25′–30′.  相似文献   

20.
Based upon multi-wavelength observations outlined by Huang et al. [Solar Phys. 213 (2003) 341], especially the dynamic spectrum at 4.5–7.5 GHz, we study the physical nature of the radio fine structures (FS) during the flare on August 25, 1999 in AR 8674 (S28E21). The main results are: (1) the helical loop of the event related to the FS is unstable for m = 1 kink mode; (2) the time interval between the beginning of reconnection and relaxation of the unstable loop, inferred from the observation, is quantitatively consistent with the results of the numerical simulations on kink unstable loop; (3) the magnetic field strength estimated from the fast kink standing wave is basically of the same order as that estimated from the photospheric magnetic field, which provides strong support to our analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号