首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between network magnetic fields and emerging intranetwork fields may lead to magnetic reconnection and microflares, which generate fast shocks with an Alfvén Mach number M A<2. Protons and less abundant ions in the solar corona are then heated and accelerated by fast shocks. Our study of shock heating shows that (a) the nearly nondeflection of ion motion across the shock ramp leads to a large perpendicular thermal velocity (v th), which is an increasing function of the mass/charge ratio; (b) the heating by subcritical shocks with 1.1 MA 1.5 leads to a large temperature anisotropy with T/T 50 for O5+ ions and a mild anisotropy with T/T 1.2 for protons; (c) the large perpendicular thermal velocity of He++ and O5+ ions can be converted to the radial outflow velocity (u) in the divergent coronal field lines; and (d) the heating and acceleration by shocks with 1.1 MA 1.5 can lead to u(O5+) v th(O5+) 460 km s–1 for O5+ ions, u(He++) v th(He++) 360 km s–1 for He++ ions, and u(H+) v th(H+) 240 km s–1 for protons at r=3–4 R . Our results can explain recent SOHO observations of the heating and acceleration of protons and heavier ions in the solar corona.  相似文献   

2.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

3.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

4.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

5.
Gamow was one of the pioneers who studied the possible variability of fundamental physical constants. Some versions of modern Grand Unification theories do predict such variability. The paper is concerned with three of the constants: the fine-structure constant , the ratio of the proton massm p to the electron massm e, and the ratio of the neutron massm n tom e. It is shown on the basis of the quasar spectra analysis, that all the three constants revealed no statistically significant variation over the last 90% of the life time of the Universe. At the 2 significance level, the following upper bounds are obtained for the epoch corresponding to the cosmological redshiftsz2–3: /<1.5×10–3, m p/m p<2×10–3, and m/m<3×10–4, where x is a possible deviation of a quantityx from its present value,m=m p+m n, and the nucleon masses are in units ofm e. (According to new observational data which became known most recently, m p/m p<2×10–4) In addition a possible anisotropy of the high-redshift fine splitting over the celestial sphere is checked. Within the relative statistical error 3 < 1% the values of turned out to be the same in various quadrants of the celestial sphere, which corresponds to their equality in causally disconnected areas. However, at the 2 level a tentative anisotropy of estimated / values is found in directions that approximately coincide with the direction of the relic microwave background anisotropy.The revealed constraints serve as criteria for selection of those theoretical models which predict variation of ,m p orm n with the cosmological time.  相似文献   

6.
For five years, theEdison program has had the goal of developing new designs for infrared space observatories which will break the cost curve by permitting more capable missions at lower cost. Most notably, this has produced a series of models for purely radiative and radiative/mechanical (hybrid) cooling which do not use cryogens and optical designs which are not constrained by the coolant tanks. Purely radiatively-cooled models achieve equilibrium temperatures as low as about 20 K at a distance of 1 AU from the sun. More advancedEdison designs include mechanical cooling systems attached to the telescope assembly which lower the optical system temperature to 5 K or less. Via these designs, near-cryogenic temperatures appear achievable without the limitations of cryogenic cooling. OneEdison model has been proposed to the European Space Agency as the next generation infrared space observatory and is presently under consideration as a candidate ESA Cornerstone mission. The basic design is also the starting point for elements of future infrared space interferometers.  相似文献   

7.
A model for the emission processes causing rapid variability (less than one day) in active galactic nuclei is developed. Relativistic electron beams escape from reconnection sheets in coronae of accretion disks and excite plasma turbulence with a typical frequency , which depends on the electron number densityn (see also the contribution by R. van Oss). The finite lengths of different beams emerging from different reconnection sheets allows that the waves arecoherently scattered to frequencies 2pe. For Lorentz factors 103 and densities typical for disk coronaen106 cm –3 (derived from iron line observations) one easily reaches the optical, frequency range. The time scale of the variability is then caused by the relaxation of the electron beams. Likewise, this model explains the very rapid variability in the X-ray (less than 10 minutes) by changing the parameters slightly. According to this scenario the higher the variable frequency is, the closer to the central black hole it should originate.  相似文献   

8.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

9.
We consider the influence of the nonlinear stage of gravitational instability on the two-point correlation functions of gravitationally bound objects. Based on the theory of nonlinear gravitational contraction of a single density peak of dissipationless matter (Gurevich and Zybin, 1988a,b; 1990) we develop a method for calculating the two-point correlation functions of different objects of any mass. The method works good in the region of strong correlations and can be easily extended to calculate higher correlation functions. We show that the main contribution to the correlation function i in the region of strong correlations i 1 is made by pair systems located outside large clusters of objects. In this region the shape of i is determined only by the nonlinear dynamics of gravitational contraction of dissipationless matter and has the form i C , where 1.8 is a universal parameter.  相似文献   

10.
Using the Hubble Space Telescope (HST) and the Faint Object Spectrograph (FOS) high signal to noise spectrograms were obtained for 15 OB stars in the Magellanic Clouds***, three of which are of spectral type O3. The data cover the spectral region from 1150 A – 2300 A with a resolution of /1 A. One O8.5 supergiant, OB78#231, in M31is also included in this work. These data are a substantial improvement on previous high resolution IUE observations in the Magellanic Clouds (Walborn et al. 1985 and references therein) because of the smaller aperture and the much better signal to noise ratio, while no high resolution UV spectra of O stars in M31 have been obtained before. In this paper we discuss various morphological aspects of the spectra, concerning metallicity and the stellar winds, compared to galactic analogues.  相似文献   

11.
Small scale structure in local interstellar matter (LISM) is considered. Overall morphology of the local cloud complex is inferred from Ca II absorption lines and observations of H I in white dwarf stars. Clouds with column densities ranging from 2–100 × 1017 cm–2 are found within 20 pc of the Sun. Cold (50 K) dense (105 cm–3) small (5–10 au) clouds could be embedded and currently undetected in the upwind gas. The Sun appears to be embedded in a filament of gas with thickness 0.7 pc, and cross-wise column density 2 × 1017 cm–2. The local magnetic field direction is parallel to the filament, suggesting that the physical process causing the filamentation is MHD related. Enhanced abundances of refractory elements and LISM kinematics indicate outflowing gas from the Scorpius-Centaurus Association. The local flow vector and Sco data are consistent with a 4,000,000 year old superbubble shell at –22 km s–1, which is a shock front passing through preshock gas at –12 km s–1, and yielding cooled postshock gas at –26 km s–1in the upwind direction. A preshock magnetic field strength of 1.6 G, and postshock field strength of 5.2 G embedded in the superbubble shell, are consistent with the data.Abbreviations LISM Local ISM - SIC Surrounding Interstellar Cloud - LIC Local Interstellar Cloud  相似文献   

12.
The advent of far infrared arrays will change fundamentally the means of analyzing observations in this spectral region. Sources much fainter than traditional confusion limits will be extracted from images by using computer algorithms similar to CLEAN or DAOPHOT. We have conducted numerical experiments to evaluate these techniques and show that they will permit long integrations (10,000 sec at 60 m, 200 sec at 100 m) to achieve nearly photon-background-limited performance and hence very deep detection limits. The dominant noise sources—photon noise, confusion by distant galaxies, and confusion by IR cirrus — scale with nearly the same power of the telescope aperture. As a result, the integration times required to reach confusion limits are nearly aperture-independent.  相似文献   

13.
We review the possible evolutionary paths from massive stars to explosive endpoints as various types of supernovae associated with Population I and hence with massive stars: Type II-P, Type II-L, Type Ib, Type Ic, and the hybrid events SN 1987K and SN 1993J. We identify SN 1954A as another hybrid event from the evidence for both H and He in its spectrum with velocities nearly the same as SN 1983J. Evidence for ejected56Ni mass of 0.07 M suggests that SN II-P underwent standard iron core collapse, not collapse of an O–Ne–Mg core nor thermonuclear explosion of a C–O core. Most SN II-P presumably arise in single stars or wide binaries of 10–20 M. There may be indirect evidence for duplicity in some cases in the form of strong Ba II lines, such as characterized SN 1987A. SN II-L are recognizably distinct from typical SN II-P and must undergo a significantly different evolution. Despite indications that SN II-L have small envelopes that may be helium enriched, they are also distinct from events like SN 1993J that must have yet again a different evolution. The SN II-L that share a common Luminosity seem to have ejected a small nickel mass and hence may come from stars with O–Ne–Mg cores. The amount of nickel ejected by the exceptionally bright events, SN 1980K and SN 1979C, remains controversial. SN Ib require the complete loss of the H envelope, either to a binary companion or to a wind. The few identified have relatively large ejecta masses. It is not clear what evolutionary processes distinguish SN Ib's evolving in binary systems from hybrid events that retain some H in the envelope. SN Ic events are both H and He deficient. Binary models that can account for transfer of an extended helium envelope from low mass helium cores, 2 to 4 M, imply C–O core masses that are roughly consistent with that deduced from the ejecta mass plus a neutron star, 2 to 3 M. It is possible that the hybrid events are the result of Roche lobe overflow and that the pure events, SN Ib or SN Ic, result from common envelope evolution.  相似文献   

14.
The current situation with the cosmological model and fundamental constants is briefly reviewed. Here, we concentrate on evolutionary effects of large-scale structure formation, in particular, the relationship with the quasar distribution and dynamics is discussed. We argue that groups of bright quasars with few or more than dozen of members within regions l LS(100–150)h –1 Mpc found atz<2 may belong to concentrations of young rich clusters of galaxies, and thus be distant Great Attractors like the local GA or the Shapley concentration. These early large-scale galactic structures (i) provide a natural way to bias the distribution of Abell clusters, and (ii) suggest that the spectrum of primordial density perturbations is nearly flat on scales encompassing both the cluster and GAs,l=k –1(10,100)h –1 Mpc: k 2 k 3 P(k) k , =1 –0.4 +0.6 , whereP(k) is the power spectrum of density perturbations.  相似文献   

15.
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue).  相似文献   

16.
A short review is given on the history of the peculiar variable object Car and on a number of relevant references describing and discussing its physical characteristics and behaviour, based on different types of observational techniques. The star is known to be variable since the 17th century. The excessive mass loss to which it was subject during the 19th century is now visible as an ellipsoidal reflection nebula of 15 diameter: the so-called homunculus. The remainder of the paper is spent on different kinds of problems partly based on the results of a decade of photometric monitoring in the VBLUW photometric system of Walraven. Foreground reddening and reddening by dust in the homunculus are determined and amount to E(B - V) J = 0 50 and < 6, respectively. Scanning of the homunculus revealed an estimate for the photometric characteristics of the central object, which presumably consists of a massive hot star surrounded by a cooler gas envelope. The total luminosity is derived using fluxes of various sources in the wavelength region 0.15 < < 175 n resulting in M bol = - 12 3 ± 0 2. The total observed flux corrected for foreground extinction corresponds to a star with R 96 R if T eff 30 000 K. The mass may be near 150 M . The excess luminosity in 1843, when the star was presumably bolometrically at least 2 5 brighter than at present, may have been caused by envelope-energized pulsations when the star's luminosity was close to its Eddington limit. The temperature should then have been 50 000 K. The mass loss rate, during the excess luminosity phase lasting 30 yr, is estimated to amount to M 4 × 10-3 M yr-1. At present the mass loss may be M 10-4M yr-1. Since the homunculus is mainly built up from material expelled in the 30 yr interval (from 1830 to 1860), its total mass amounts to M hom 0.15 M . The historical observations of the colours of Car and a comparison with the characteristics of S Dor type stars, suggest that Car was subject to a number of S Dor type phases similar to those of P Cyg (in the 17th century), S Dor and others. A satisfactory explanation is found for the complete historical light curve. The decrease in light after the 1843 maximum by 9 m , presumably consists of a fading of the luminosity excess and the S Dor effect by 2 5 and 3m, respectively, and a 3 5 extinction by circumstellar dust. The small amplitude light variations which Car showed during the last decade, were studied with the aid of the variations of the Balmer jump. They are presumably caused by temperature variations of the central star.Percy and Welch (1983) (Publ. Astron. Soc. Pacific 95, 491) have observed P Cyg on a number of nights in 1982 and found for the photometric variations a time scale of 30 to 50 days and an amplitude of 0 . m 15.Based partly on observations collected at the ESO, La Silla, Chile.  相似文献   

17.
The radial pulsations of very luminous, low-mass models (L/M 104, solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. We find that there are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars.  相似文献   

18.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

19.
The Infrared Space Observatory (ISO), a fully approved and funded project of the European Space Agency (ESA), is an astronomical satellite, which will operate at wavelengths from 2.5–240 m. ISO will provide astronomers with a unique facility of unprecedented sensitivity for a detailed exploration of the universe ranging from objects in the solar system right out to distant extragalactic sources. The satellite essentially consists of a large cryostat containing at launch over 2000 litres of superfluid helium to maintain the Ritchey-Chrétien telescope, the scientific instruments and the optical baffles at temperatures between 2 K and 8 K. The telescope has a 60-cm diameter primary mirror and is diffraction-limited at a wavelength of 5 m. A pointing accuracy of a few arc seconds is provided by a three-axis-stabilisation system consisting of reaction wheels, gyros and optical sensors. ISO's instrument complement consists of four instruments, namely: an imaging photo-polarimeter (2.5–240 m), a camera (2.5–17 m), a short wavelength spectrometer (3–45 m) and a long wavelength spectrometer (43–196 m). These instruments are being built by international consortia of scientific institutes and have been delivered to ESA for in-orbit operations. ISO will be launched in September 1995 by an Ariane 4 into an elliptical orbit (apogee 70000 km and perigee 1000 km) and will be operational for at least 18 months. In keeping with ISO's role as an observatory, the majority of its observing time is being made available to the general astronomical community via a Call for Observing Proposals.  相似文献   

20.
X-ray pulsar Vela X-l was observed with the X-ray astronomy satellite HAKUCHO in five occasions between March 1979 and March 1981. An increase of the pulsation period at an average rate of P/P 3.0 × 10–4 yr–1 was observed over the time span of two years. Besides, variations of the pulse period in the time scale of 10 days were resolved in superposition on the secular spin-down trend. The observed rate of change P - 3 × 10–8, for both spin-up and spin-down, is an order of magnitude greater than the secular spin-down rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号