首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
针对涡扇发动机气路状态监控存在模型未知或不准确导致滤波效果下降甚至发散的问题,研究了一种融入高斯过程回归(GPR)的改进平方根无迹卡尔曼滤波(UKF)方法.该方法利用GPR对训练数据进行学习,建立发动机气路部件状态监控的GPR模型,替代UKF方法中的非线性系统模型;采用超球体单形采样和平方根滤波方法来提高滤波的计算效率和数值稳定性.仿真结果表明:训练的GPR模型解决了UKF方法对发动机原系统模型和噪声协方差矩阵依赖性的问题;与扩展卡尔曼滤波(EKF)和平方根UKF方法相比较,改进平方根UKF方法精度更高,对健康参数的估计精度达到99.9%,实现了对涡扇发动机单个和多个气路部件健系参数的有效跟踪.   相似文献   

2.
为实现涡扇发动机全包线范围内具有较高精度的快速实时仿真,结合快速原型技术和发动机非线性模型设计了一种气路部件在线健康监控系统。该系统采用涡扇发动机非线性模型模拟真实发动机进行实时计算,并将基于优化拟合法获得最优的发动机线性化模型融入扩展Kalman滤波算法,对气路部件健康参数进行实时跟踪,将该跟踪方法运用于基于CompactDAQ和CompactRIO平台设计的发动机在线故障诊断原型系统进行仿真试验验证。仿真结果表明,基于快速原型技术与发动机非线性模型构建的在线健康监控系统能够实现对气路部件故障的有效诊断,平均正确率达到98.28%。  相似文献   

3.
针对涡扇发动机气路部件故障诊断中参数存在不同的噪声统计特性,提出了一种自适应平方根容积卡尔曼滤波(ASRCKF)器的自适应滤波方法.该方法直接利用基于3阶容积积分方法近似发动机的非线性统计特性,用于替代非线性无迹卡尔曼滤波方法的系统模型,避免了滤波过程参数选取的问题;采用移动窗口法对噪声协方差矩阵进行自适应估计,提高了算法对不同统计特性噪声的自适应能力和滤波精度.通过对发动机气路部件健康参数蜕化过程仿真结果表明:ASRCKF方法相比平方根容积卡尔曼滤波(SRCKF)方法,精度提高40%~50%,对不同噪声信号具有更好的适应能力.   相似文献   

4.
航空发动机气路故障诊断的平方根UKF方法研究   总被引:11,自引:9,他引:2  
设计了适用于双轴涡扇发动机健康参数估计的平方根UKF滤波算法,解决了线性卡尔曼滤波器估计结果准确性依赖于线性模型精度;常规UKF算法中由于计算误差及噪声信号影响引起误差协方差矩阵负定而导致滤波结果发散等问题.提出了根据测量残差变化改进滤波收敛速度与稳定性的方法.发动机渐变与突变故障模式下仿真结果表明,平方根UKF估计算法收敛速度快,稳定性强,精度高,是一种有效的发动机气路部件健康参数估计与故障诊断方法.   相似文献   

5.
李魁  胡宇  孙振生 《航空动力学报》2020,35(9):2006-2016
以典型气路突变故障信号的稀疏特性为基础,通过对涡扇发动机部件特征原子组进行分类,提出了改进K-奇异值分解(K-singular value decomposition,K-SVD)字典训练的稀疏诊断方法,并结合气路典型突变故障开展了仿真实验研究。仿真结果表明:相比于拓展卡尔曼滤波(extended Kalman filter,EKF)和无迹卡尔曼滤波(unscented Kalman filter,UKF)方法,改进K-SVD方法对故障定位准确,无故障部件健康参数变化为0,可有效提高故障部件辨识度,避免误诊断;计算耗时与EKF方法基本相等,仅为UKF方法的03%,是一种有效的航空发动机气路突变故障在线诊断方法。  相似文献   

6.
基于双重卡尔曼滤波器的发动机故障诊断   总被引:6,自引:4,他引:2  
提出了一种基于双重卡尔曼滤波器的航空发动机健康参数估计方法,实现了传感器发生故障情况下发动机故障的准确诊断.采用发动机动态工作点的测量数据,解决了可测量参数偏少导致故障诊断困难的问题;球面采样平方根UKF(UnscentedKalmanfilter)故障诊断滤波器具有更好的滤波稳定性与更低的计算量的要求,提高了故障诊断算法的效率与精度.某型双轴涡扇发动机故障诊断仿真结果表明,该方法可以准确的同步实现气路部件与传感器的故障诊断,是一种有效的航空发动机故障诊断方法.   相似文献   

7.
基于自适应粒子滤波的涡扇发动机故障诊断   总被引:4,自引:1,他引:3  
黄金泉  冯敏  鲁峰 《航空动力学报》2014,29(6):1498-1504
针对涡扇发动机非线性、非高斯的特点,提出了一种自适应的粒子滤波算法用于涡扇发动机气路部件突变故障的诊断.为了减小算法的计算量并且保证滤波精度,分析了滤波精度和样本数目的关系,提出根据滤波过程中状态的方差自适应地调整粒子数,在保证一定的滤波精度下可以有效地减少滤波过程中使用的粒子数,提高了算法的实时性.同时,引入扩展卡尔曼滤波(EKF)用于更新粒子,产生重要概率密度函数,在一定程度上避免了粒子的退化.通过某型涡扇发动机的仿真分析表明:改进的算法相比标准粒子滤波算法用于涡扇发动机气路部件故障诊断时,参数估计的方均根误差减小了50%左右,且算法的计算量减小了30%.  相似文献   

8.
涡扇发动机气路部件故障增益调度容错控制   总被引:1,自引:1,他引:0       下载免费PDF全文
针对涡扇发动机气路部件故障导致控制性能下降甚至影响安全性的问题,提出了一种增益调度容错控制器设计方法。在全飞行包线内对发动机不同的工作点,基于部件线性化方法建立高精度的带健康参数的发动机线性化模型,并设计相应的卡尔曼滤波器构建气路部件故障诊断模块,估计出反映发动机气路部件故障程度的健康参数;针对不同工作点处正常状态和部件故障状态的线性化模型,分别设计一系列的鲁棒控制器,并根据调度参数和健康参数对发动机进行增益调度控制,以某型民用涡扇发动机为对象实现控制器的仿真验证。仿真结果表明:通过引入健康参数这一新的调度变量实现了增益调度容错控制,改善了原控制系统在气路部件发生故障导致部件流量和效率较大变化时的控制效果,保证了系统的稳定性;同时,在全飞行包线范围内有效地实现了气路部件故障下控制指令跟踪,达到了期望响应性能,控制误差、超调量和调节时间都很小,符合发动机控制系统技术要求。  相似文献   

9.
顾嘉辉  黄金泉  鲁峰 《推进技术》2018,39(11):2564-2570
针对商用航空发动机与气路相关的传感器分布不均、且个数小于气路健康参数的个数、使用卡尔曼滤波算法估计全部气路健康参数时容易出现误判的特点,提出一种神经网络修正的卡尔曼滤波算法。该算法在每个采样周期内利用BP神经网络来修正个体的偏移方向,按粒子滤波算法计算每个个体的权值用以估计总体的均值和协方差,然后利用卡尔曼滤波算法更新所有个体,并将总体的均值作为当前时刻的估计结果。通过对商用航空发动机部件级模型在多个飞行状态点数字仿真模拟9种气路突变故障,由7个可测输出估计全部10个健康参数,该混合算法的估计误差相比BP神经网络与无迹卡尔曼滤波算法分别平均降低了34.6%与47.9%。  相似文献   

10.
针对涡扇发动机气路测量参数难以优化筛选的问题,采用基于奇异值分解(SVD)的能观度分析方法对其能观度进行了分析。该方法可以计算获得各状态参数的具体能观度,实现对模型优劣性的定量评价;也可得到各测量参数与各状态参数能观度之间的敏感度关系,掌握彼此之间的关联程度,为后续气路测量参数的优化筛选奠定理论基础,最后采用改进平方根无损卡尔曼滤波(Unscented Kalman Filter,UKF)递推算法对各气路部件突变故障进行了仿真分析,根据各状态参数的估计精度验证了本文能观度分析结果的正确性。  相似文献   

11.
金鹏  鲁峰  黄金泉 《推进技术》2019,40(12):2665-2673
针对航空发动机部件制造装配以及性能蜕化引起的平均模型与个体发动机之间的性能不匹配问题,提出一种基于非线性滤波算法的发动机部件特性自动修正方法。根据发动机部件级平均模型输出与个体量测数据的残差,利用数据处理策略结合无迹卡尔曼滤波算法的不可测部件特性变化估计,自动更新发动机部件特性,建立发动机个体物理模型。通过小涵道比涡扇发动机仿真验证,结果表明该方法可自动修正发动机部件特性,相比较平均模型,通过该方法修正的发动机个体模型中各截面温度、压力计算偏差均在0.5%以内,有效提高涡扇发动机个体物理模型稳态、动态精度。  相似文献   

12.
袁春飞  姚华 《推进技术》2007,28(1):9-13
以某型涡扇发动机为研究对象,构建了基于卡尔曼滤波器和遗传算法的航空发动机性能诊断方法。卡尔曼滤波器根据发动机可测参数偏离额定特性时的变化量,对发动机性能参数进行了估计。当传感器存在测量偏差时,会使滤波器估计结果偏离真实情况。遗传算法以机载模型输出与发动机测量参数之间的误差最小为目标,通过优化计算,找出存在测量偏差的传感器,确定其偏差,并最终消除测量偏差对性能诊断的影响。  相似文献   

13.
针对存在建模误差及测量噪声干扰条件下的涡扇发动机性能参数估计问题,标准卡尔曼滤波及其改进算法滤波估计误差收敛速度慢,滤波估计精度低,对不确定测量噪声及建模误差较为敏感,为此本文提出了一种变参数鲁棒H_∞滤波器设计方法。该方法采用仿射参数依赖Lyapunov函数设计满足H_∞性能指标要求的鲁棒滤波器,通过引入凸多胞技术,将参数依赖线性矩阵不等式(Linear Matrix Inequality,LMI)中变参数Lyapunov矩阵与系统系数矩阵之间耦合乘积导致的非凸优化问题,转化为常规LMI约束下的凸优化问题进行求解,降低了线性变参数(Linear Parameter Varying,LPV)鲁棒滤波器设计的保守性,得到了全局解。针对涡扇发动机的仿真结果表明:与扩展卡尔曼滤波器对比,采用该方法设计的滤波器具有较快的动态跟踪速度和较高的滤波精度,ΔFn的稳态估计误差不大于0.1%,ΔFn的相对估计误差不大于2.5%,同时对建模误差和测量噪声干扰具有较强的抑制能力。  相似文献   

14.
为对发动机机动性能的退化程度进行估计,开展了基于过渡工作过程的气路分析研究。针对气路传感器数目较少的情况,采用序列工作点方法对大量的健康参数进行分析,在增加可用信息量的同时,降低了由多工作点方法的平均效应引入的参数估计系统误差。为解决发动机大偏差性能退化健康参数估计中的计算收敛性问题,提出了间接递归牛顿-拉夫逊法强化非支配分类差分进化算法。针对某型双轴分排涡扇发动机的气路分析结果表明:采用本文所提出的方法能够在气路传感器数目有限的条件下,利用发动机过渡态数据实现对大偏差范围内大量健康参数的高效、准确估计。  相似文献   

15.
郭庆  李印龙 《航空动力学报》2021,36(11):2251-2260
针对单参数驱动的涡扇发动机性能退化预测精度不高的问题,提出了一种基于气路参数融合的涡扇发动机性能退化预测的方法。通过监测发动机性能退化过程中多源参数,采用专家经验和核主成分分析相结合的方法,进行发动机性能参数的选择和融合,从而构建健康参数。基于非线性Wiener过程构建涡扇发动机退化模型,采用极大似然方法求得发动机退化模型的离线参数估计值;由于不同发动机性能退化的差异性,基于贝叶斯更新理念对随机参数进行实时更新,可以实现对单台发动机的性能退化实时预测。通过实例验证,采用此方法在预测末端方均根误差为0.028 3,整体预测精度提升了54.5%,可以辅助指导维修决策。   相似文献   

16.
Aero-engine gas path health monitoring plays a critical role in Engine Health Management(EHM). To achieve unbiased estimation, traditional filtering methods have strict requirements on measurement parameters which sometimes cannot be measured in engineering. The most typical one is the High-Pressure Turbine(HPT) exit pressure, which is vital to distinguishing failure modes between different turbines. For the case of an abrupt failure occurring in a single turbine component, a model-based sensor measurement reconstruction method is proposed in this paper. First,to estimate the missing measurements, the forward algorithm and the backward algorithm are developed based on corresponding component models according to the failure hypotheses. Then,a new fault diagnosis logic is designed and the traditional nonlinear filter is improved by adding the measurement estimation module and the health parameter correction module, which uses the reconstructed measurement to complete the health parameters estimation. Simulation results show that the proposed method can well restore the desired measurement and the estimated measurement can be used in the turbofan engine gas path diagnosis. Compared with the diagnosis under the condition of missing sensors, this method can distinguish between different failure modes, quantify the variations of health parameters, and achieve good performance at multiple operating points in the flight envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号