首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用Aura卫星资料计算全球中层大气背景风场   总被引:6,自引:3,他引:3  
利用2005年第二代地球观测卫星系统(EOS)的Aura卫星上MLS观测的压强、温度、密度等数据,推算出全球中层大气的平均背景风场,分析了中层大气风场随时间和高度变化的特点.与武汉流星雷达及澳大利亚Adelaide台站观测的比较结果显示,用Aura数据推算出来的风场与实际观测比较符合.与HWM-93模式的比较显示,Aura风场随时间和空间变化的总体趋势与HWM-93基本吻合.特别是在80km以下的高度范围内Aura数据与HWM-93数据符合得比较好;在80 km以上的高度,Aura所算得的风值与HWM-93风值的差别逐渐增大,Aura风值普遍比HWM-93的要大.   相似文献   

2.
Atmospheric corrections to satellite data are important for comparing multitemporal data sets over tropical regions with variable aerosol loading. In this study, we evaluated the potential of 6S radiative transfer model for atmospheric corrections of IRS-P6 AWiFS satellite data sets, in a semi-arid landscape. Ground measurements of surface reflectance representing different land use/land cover categories were conducted to relate IRS-P6 AWiFS top of atmospheric reflectance. The 6S radiative transfer model was calibrated for local conditions using ground measurements for aerosol optical depth, water vapor and ozone with a sun photometer. Surface reflectance retrieved from 6S code was compared with top of atmosphere (TOA) reflectance and ground based spectroradiometer measurements. Accurate parameterization of the 6S model using measurements of aerosol optical depth, water vapor and ozone plays an important role while comparing ground and satellite derived reflectance measurements.  相似文献   

3.
In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick’s Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75?m/s and the equatorward wind enhanced to a peak value of over 100?m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.  相似文献   

4.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   

5.
During the last two decades, accelerometers on board of the CHAMP, GRACE, GOCE and Swarm satellites have provided high-resolution thermosphere density data to improve our knowledge on atmospheric dynamics and coupling processes in the thermosphere-ionosphere region. Most users of the data have focused on relative density variations. Scale differences between datasets and models have been largely neglected or removed using ad hoc scale factors. The origin of these scale differences arises from errors in the aerodynamic modelling, specifically in the modelling of the satellite outer surface geometry and of the gas-surface interactions. Therefore, the first step to remove the scale differences is to enhance the geometry modelling. This work forms the foundation for the future improvement of characterization of satellite aerodynamics and gas-surface interactions models at TU Delft, as well as for extending the use of sideways and angular accelerations in the aerodynamic analysis of accelerations and derivation of thermosphere datasets. Although work to improve geometry and aerodynamic force models by other authors has focused on CHAMP and GRACE, this paper includes the GOCE and Swarm satellites as well. In addition, it uses a density determination algorithm that is valid for arbitrary attitude orientations, enabling a validation making use of attitude manoeuvres. The results show an improvement in the consistency of density data between these four missions, and of data obtained before, during and after attitude manoeuvres of CHAMP and Swarm. The new models result in larger densities, compared to the previously used panel method. The largest average rescaling of density, by switching to the new geometry models is reached for Swarm at 32%, the smallest for GRACE at 5%. For CHAMP and GOCE, mean differences of 11% and 9% are obtained respectively. In this paper, an overview of the improvements and comparisons of data sets is provided together with an introduction to the next research phase on the gas-surface interactions.  相似文献   

6.
捕风一号卫星是中国首次实现基于星载导航卫星反射信号测量(global navigation satellite system-reflection,GNSS-R)技术的气象卫星,采用新型L波段海面风场信息探测技术,在风场测量、海面飓风风速反演等方面为国家气象、防灾减灾等行业提供服务.从系统设计角度介绍了捕风一号卫星的总...  相似文献   

7.
Asymmetrical spin stabilized satellite dynamics in the vicinity of the required motion is considered. The principal axis of the maximum moment of inertia slightly deviates from its assumed direction in the satellite reference frame. This is formalized in the cross products of inertia. This inertial uncertainty results in a wobble, that is undesired angular velocity components perpendicular to the rotation axis, and oscillations of this axis near the required direction. The torque-free motion is investigated first. Expressions that explicitly relate satellite inertia parameters to wobble are provided. Wobble evolution under the action of magnetic damping control is analyzed next. Its amplitude approximate exponential decay behavior and residual unavoidable wobble level are derived. These expressions are compared with numerical simulation results of nonlinear equations of motion including various disturbance sources.  相似文献   

8.
New meteor radar (MR) horizontal wind data obtained during 2015–2018 at Kazan (56°N, 49°E) are presented. The measurements were carried out with a state-of-the-art SKiYMET meteor radar. Monthly mean vertical profiles of zonal and meridional components of the prevailing wind speeds, also amplitudes and phases of the components of diurnal (DT) and semidiurnal tide (SDT) winds are displayed as contour plots for a mean calendar year over the four recent years and compared with distributions of these parameters provided by the previous multiyear (1986–2002) meteor radar (MR) measurements at Kazan and by the recent HWM07 empirical model. The analysis shows that the SKiYMET zonal and meridional prevailing wind speeds are generally in good agreement, sharing the same seasonal features, with the earlier MR seasonal winds. Comparisons with the HWM07 model are not favourable: eastward solstitial cells as modelled are significantly larger, >30?m/s compared to 15–20?m/s. Also, reversal lines are too variable with height, and the positions of modelled cells (positive and negative) are unlike those of either MRs at Kazan or other MLT radars. Both MR systems provide the large SDT amplitudes, approximately 30?m/s and vertical wavelengths, approximately 55?km, for both components at middle latitudes in winter. They also show the well known strong SDT September feature (heights 85–100?km, the vertical wavelength ~55–60?km), and the weak summer SDT for 80–91?km. HWM07 shows unrealistic amplitudes and phases above 90?km by height and month: minimal amplitudes in equinoxes and no September feature.The weak DT of middle to high latitudes provide similar amplitude and phase structures from both MRs, 1986–2002 and 2015–2017: largest amplitudes (10–12 or 8–10?m/s) for the evanescent meridional tide in summer, peaking in late July; weakest (0–2, 2–4?m/s) at 80 to 92–96?km, when the tide is vertically propagating (January, February, November, December) with a vertical wavelength near 40?km. Again, HWM07 differs in amplitude and phase structures: showing peak amplitudes in equinoxes: April, 15?m/s at 88?km; October, 21?m/s at 89?km.Coupling of the MR wind parameters with the ERA5 wind parameters is studied for a case in 2016. It is shown that the prevailing winds and DT amplitudes and phases of both datasets can be simply linked together, but that the ERA5 SDT amplitudes are significantly underestimated at the top model levels of the ERA5 reanalysis project.  相似文献   

9.
武汉中层大气中频雷达及其初步探测结果   总被引:7,自引:9,他引:7  
首先简要地讨论了武汉中频雷达观测原理和设备的组成,该雷达测量60-100km高度的大气风场和电子密度,风场采用分布天线测量技术和全相关分析方法得到,电子密度通过微分吸收和微分相位技术获得,初步观测结果表明:(1)武汉上空冬季60-100km高度的纬向风多为西风,风速为30-50m/s,经向风速为10-20m/s,垂直风速较小,一般在5m/s以内,(2)60-100km高度范围的大气风场和电子密度均有明显的日变化,风场在某些时段和高度区间有较强的风剪切出现。(3)80km以上高度大气的风场和电子密度存在较明显的扰动现象,它可能与大气波动过程有关。  相似文献   

10.
Gravity measurements from a high-altitude balloon can verify global and upward-continued gravity models. A gravimeter suspended beneath a balloon is in a dynamic, and largely unpredictable, environment sensing accelerations due to gravity and balloon motions. Independent measurements of balloon motions using inertial navigation data combined with ground tracking data will allow for separation of balloon-induced accelerations from gravitational accelerations. Analysis of these data must estimate: 1) vertical gravimeter accelerations due to motion and gravity, 2) horizontal velocity to estimate the Eötvös effect, and 3) gravimeter position for comparison with gravity models. The first engineering test flight occurred on 11 October 1983, during the seasonal wind reversal and was very successful. Flight duration was approximately seven hours, with two hours of data collected at each of 30 km and 26 km altitudes. The results include gravity estimates, design criteria for future flights and feasibility analysis for vertical gravity profiles during ascent and descent.  相似文献   

11.
This paper describes the upgrade of the GOCE Level 1b gradiometer processing as part of ESA’s Payload Data Segment (PDS). Four processing steps have been identified which can be improved: 1. The optimal determination of the angular rates of the satellite, based on a combination of star sensor and gradiometer data. This is the so-called angular rate reconstruction. 2. The optimal determination of the spacecraft’s attitude, again based on a combination of star sensor and gradiometer data. 3. The combination of data of all simultaneously available star sensors. And, 4. the calibration of the measured accelerations is improved by taking the time dependence of selected calibration parameters into account.  相似文献   

12.
The early history of solar wind was replete with prejudices and strong opposition to Parker’s formulation. It was only after conclusive evidence from satellite data was obtained that the idea of solar wind was accepted. Some personal experiences of mine during my stay at the University of Chicago in 1953–1954, including the encounter of Dr. Simpson with Dr. Biermann and the inconclusive discussion between them about a possible perpetual solar outflow of particles are presented and further developments when Parker came to Chicago in 1956 and formulated his idea of solar wind, as narrated to me later by Dr. Simpson, are described.  相似文献   

13.
Utilizing ACE satellite observations from 1998 to 2009, we performed the elaborate study on the properties of the clock angle θCA (arctan(By/Bz) (?90° to 90°) of the interplanetary magnetic field (IMF) in the solar wind at 1?AU. The solar wind with northward IMF (NW-IMF) and southward IMF (SW-IMF) are analyzed, independently. Statistical analysis shows that the solar wind with SW-IMF and NW-IMF has similar properties in general, including their durations, the IMF Bz and By components, and the IMF θCA. Then, the solar wind with NW-IMF (SW-IMF) is classified into five different temporal scales according to the duration of the NW-IMF (SW-IMF), i.e., very-short wind of 10–30?min, short-scale wind of 0.5–1?h, moderate-scale wind of 1–3?h, long-scale wind of 3–5?h, and super-long wind >5?h. Our analysis reveals that the IMF θCA has a distinct decrease with increase of the temporal scale of the solar wind. Next, the solar wind is classified into two groups, i.e., the high-speed solar wind (>450?km/s) and the low-speed solar wind (<450?km/s). Our analysis indicates that the IMF θCA depends highly on the solar wind speed. Statistically, high-speed solar wind tends to have larger IMF θCA than low-speed solar wind. The evolutions of the solar wind and IMF with the solar activity are further studied, revealing no clear solar variation of the IMF θCA. Finally, we analyze the monthly variation of the IMF θCA. Superposed epoch result strongly suggests the seasonal variation of the IMF θCA.  相似文献   

14.
Foreshock is a special region located upstream of the Earth’s bow shock characterized by the presence of various plasma waves and fluctuations caused by the interaction of the solar wind plasma with particles reflected from the bow shock or escaping from the magnetosphere. On the other hand, foreshock fluctuations may modify the bow shock structure and, being carried through the magnetosheath, influence the magnetopause. During the years 1995–2000, the INTERBALL-1 satellite made over 10,000 hours of plasma and energetic particles measurements in the solar wind upstream of the Earth’s bow shock. We have sorted intervals according to the level of solar wind ion flux fluctuations and/or according to the flux of back-streaming energetic protons. An analysis of connection between a level of ion flux fluctuations and fluxes of high-energy protons and their relation to the IMF orientation is presented.  相似文献   

15.
全球尺度高时空分辨率海面风场探测是当前全球气象研究及预报预测领域的关注热点之一,传统海面风场探测技术存在测量区域有限,且受天气环境限制明显等问题.基于全球导航卫星系统-反射(GNSS-R)测量技术风速反演原理,以捕风一号1级数据产品为输入,欧洲中期天气预报中心再分析风速数据为参考风速,采用地球物理模型函数(GMF)方法...  相似文献   

16.
In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10?s averaged Doppler tracking pass residuals is approximately 0.39?mm/s; and the average of the laser tracking pass residuals becomes 1.42?cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25?cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of ?0.15 to +0.15?mm/s.  相似文献   

17.
目前海面风场观测手段有限,基于全球导航卫星系统反射信号处理(global navigation satellite system reflection,GNSS-R)的天基观测为全球风场信息获取提供了全新的手段.GNSS-R海面风速探测技术具有全天时、全天候、低功耗、宽覆盖、多信号源、低成本等特点,日益获得了广泛的关注...  相似文献   

18.
A series of experiments were performed in the Spacelab-1 mission on November/December, 1983, pre-, in-, and postflight. These experiments covered various aspects of the functions of the vestibular system, the inflight tests comprising threshold measurements for linear movements in three orthogonal axes, optokinetic stimulation, vestibulo-ocular reflexes under linear and angular accelerations, caloric stimulation with and without linear accelerations; pre- and postflight tests repeated the inflight protocol with the addition of subjective vertical and eye counter-rotation measurements using a tilt table. One of the most surprising and significant results was the caloric test: strong caloric nystagmus on the two subjects tested was recorded inflight; this was contrary to what was expected from Barany's convection hypothesis for caloric nystagmus.  相似文献   

19.
After the detection of many anomalies in the Swarm accelerometer data, an alternative method has been developed to determine thermospheric densities for the three-satellite mission. Using a precise orbit determination approach, non-gravitational and aerodynamic-only accelerations are estimated from the high-quality Swarm GPS data. The GPS-derived non-gravitational accelerations serve as a baseline for the correction of the Swarm-C along-track accelerometer data. The aerodynamic accelerations are converted directly into thermospheric densities for all Swarm satellites, albeit at a much lower temporal resolution than the accelerometers would have been able to deliver. The resulting density and acceleration data sets are part of the European Space Agency Level 2 Swarm products.To improve the Swarm densities, two modifications have recently been added to our original processing scheme. They consist of a more refined handling of radiation pressure accelerations and the use of a high-fidelity satellite geometry and improved aerodynamic model. These modifications lead to a better agreement between estimated Swarm densities and NRLMSISE-00 model densities. The GPS-derived Swarm densities show variations due to solar and geomagnetic activity, as well as seasonal, latitudinal and diurnal variations. For low solar activity, however, the aerodynamic signal experienced by the Swarm satellites is very small, and therefore it is more difficult to accurately resolve latitudinal density variability using GPS data, especially for the higher-flying Swarm-B satellite. Therefore, mean orbit densities are also included in the Swarm density product.  相似文献   

20.
The Geostationary Earth Orbit (GEO) satellite is a crucial part of the BeiDou Navigation Satellite System (BDS) constellation. However, due to various perturbation forces acting on the GEO satellite, it drifts gradually over time. Thus, frequent orbit maneuvers are required to maintain the satellite at its designed position. During the orbit maneuver and recovery periods, the orbit quality of the maneuvered satellite computed with broadcast navigation ephemeris will be significantly degraded. Furthermore, the conventional dynamic Precise Orbit Determination (POD) approach may not work well, because of a lack of publicly available satellite information for modeling the thrust forces. In this paper, a near real-time approach free of thrust forces modeling is proposed for BDS GEO satellite orbit determination and maneuver analysis based on the Reversed Point Positioning (RPP). First, the station coordinates and receiver clock offsets are estimated by GPS/BDS combined Single Point Positioning (SPP) with single-frequency phase-smoothed pseudorange observations. Then, with the fixed station coordinates and receiver clock offsets, the RPP method can be conducted to determine the GEO satellite orbits. When no orbit maneuvers occur, the proposed method can obtain orbit accuracies of 0.92, 2.74, and 8.30?m in the radial, along-track, and cross-track directions, respectively. The average orbit-only Signal-In-Space Range Error (SISRE) is 1.23?m, which is slightly poorer than that of the broadcast navigation ephemeris. Using four days of GEO maneuvered datasets, it is further demonstrated that the derived orbits can be employed to characterize the behaviors of GEO satellite maneuvers, such as the time span of the maneuver as well as the satellite thrusting accelerations. These results prove the efficiency of the proposed method for near real-time GEO satellite orbit determination during maneuvers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号