首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
现代 C~3I 系统是通信、指挥、控制与情报系统的简称,包括各种各样的活动,由许多部分组成,如人、计算机、卫星、无线电设备、敏感器、飞机、车、舰船、电信网和武器系统等。系统高度综合了各种复杂技术,实质上是一个复杂而高级的信息系统。由于 C~3I 系统中的一切协同、联系、指挥控制均离不开情报信息的获取、传递、处理并作出快速反应,因此,可以说,C~3I 是  相似文献   

2.
“军事星” (Milstar)的全称为“军事战略战术与中继卫星”,是一个由美国国防部主持的三军共同协作的军用通信卫星系统,目前正处于研制阶段。在美国,“军事星”卫星计划是由总统批准的少数优先计划中的一个,也是C~3I领域中第一个享有最高优先权的计划,从而可看出该卫星的重要性。该卫星系统具有最强的抗核加固能力、最强的抗电子干扰能力和生存能力,可进行远距离通信和星与星之问的通信。所以,一旦地面站停止工作或被摧毁,能利用其它卫星进  相似文献   

3.
今年3月中旬“挑战者”号航天飞机将把第一颗跟踪与数据中继卫星(以下简称为TDRS-A)射入轨道,定点于西经41°。它是目前地球同步轨道上功能最强的一颗通信卫星,对于轨道高度在200公里以下的各种空间飞行器有55%的轨道覆盖能力。如其姐妹星TDRS-B能在今年7月份也由“挑战者”号航天飞机发射并定点于西经171°的话,那么由两颗TDRS卫星组成的跟踪与数据中继卫星系统(TDRSS)则可对轨道高度在200公里以下的卫星用户实  相似文献   

4.
据美国空间司令部负责人说,苏联的反卫星激光目前能破坏美国地球同步轨道上的卫星,而且在今后4-5年内能对上述高高度的卫星造成更严重的威胁。美国空军上将约翰·皮奥特罗斯基说,位于苏联萨雷沙甘基地发射的激光,能够摧毁地球低轨道上低于400公里的美国卫星,还能损坏宇宙空间中高达1200公里的卫星。这些激光如果用某些频率发送,还能使地球同步轨道卫星的传感器和太阳帆板受到损害。实际上,所有的美国军事通信和导弹早期预警卫星,以及大部分信息谍报卫星都位于地球  相似文献   

5.
1984年8月3日,日本利用自制 N一Ⅱ运载火箭从种子岛空间中心成功地将第三颗日本同步气象卫星(GMS-3)射入轨道。N-Ⅱ火箭将卫星置入36690×168公里的转移轨道,8月4日星上远地点发动机点火,将 GMS-3推入同步轨道。目前,GMS-3正利用肼推进系统进行机动漂移。预计,将在9月初漂到东经140度赤道上空定点位  相似文献   

6.
<正> 随着卫星通信和广播的迅猛发展,地球同步轨道(以下简称同步轨道)上的卫星日益增多,愈来愈拥挤,据不完全统计,同步轨道上的卫星已超过100颗以上。导致了国际上同步轨道定点位置的争夺也愈来愈激烈,颇有同步轨道资源危机之感。如何在赤道上空放置更多的卫星,来解决空间轨道资源不足的问题,人们都在积极探索和寻求新的途径,来提高轨道和频谱的有效利用。除采用空间波束复用、极化复用频率  相似文献   

7.
为了保护将来的地球同步轨道位置,联合国和平利用外层空间委员会发出了强烈的呼吁,将寿命即将结束的同步轨道卫星向更高的高度助推,以避免失控的卫星与其他工作卫星相碰撞。助推的轨道高度最低要150公里,乃为安全之策。  相似文献   

8.
目前,美国空军正在抓紧军事战略战术中继卫星(milstar 简称军事星)的研制工作。该系统是由卫星、地面站和终端组成的全球通信网。军事星系统计划部署7颗卫星,其中4颗在同步轨道上,3颗在极轨道上。军事星将提供 SHF 和 EHF 抗干扰通信,为装有终端机的飞机、舰船、潜艇、地面车辆及机动部队等4000个用户服务。该系统计划九十年代初部署,它将取代那些易受干扰的 UHF 和 SHF 转发器,  相似文献   

9.
培中 《国际太空》2003,(10):11-14
□□2003年6月26日,在美国加利福尼亚州范登堡空军基地,美国轨道成像公司用美国轨道科学公司的“飞马座”(Pegasus)火箭,成功地发射了轨道观测-3(OrbView-3)卫星。该卫星原计划于2000年发射,后几次因故推迟。OrbView-3卫星轨道高度470km,比快鸟-2(QuickBird-2)450km的轨道高度略高。该卫星的全色波段地面分辨率1m,多光谱波段地面分辨率4m,比QuickBird-2略低。到目前为止,世界上已有3颗在轨的高分辨率商业卫星,均为美国公司发射。它们是由太空成像公司于1999年9月24日发射的艾科诺斯-2(IKONOS-2)、由数字全球公司于2001年10月28日发射…  相似文献   

10.
武振荣 《国际太空》1994,(3):19-20,18
利用无线电手持电话机实现地球上任何两个地方之间的通信是电信工业长期以来追求的目标,利用卫星系统实现这个目标已经为期不远了。目前正在酝酿中的个人移动通信卫星系统的方案不少,其主要区别在于组成系统的卫星数量、功率和运行轨道的不同。通常,当卫星运行高度降低时,卫星的功率可以降低,但组成系统的卫星数量将增加。两个极端是高功率的地球同步轨道卫星或小功率的低轨道卫星(轨道高度为几百公里)。一些富有卫星通信经验的公司正在酝酿中轨道卫星方案。TRYV公司提出的“奥德赛”(Odyssey)系统就属于中轨道方案,该…  相似文献   

11.
迄今为止,对于同步轨道上运行的卫星,已观察、记载到数百次与卫星表面带电和放电有关的异常行为。这些异常行为主要表现为:逻辑干扰、开关转换、无指令线路转换、遥测异常、配线控制不稳定等。卫星表面的带电是由于磁层亚暴时,热等离子体(能量为几到几十千电子伏特)从磁尾注入同步高度及3—7地球半径的区域,与卫星表面材。料相互作用所致。据ATS-5卫星测得的数据:在同步轨道上运行的卫星每年约有1300小时处于亚暴环境中,其中对卫星影响较大的中、强亚暴(使表面—卫星地电位达-3~-12千伏),约占总时间的60%。  相似文献   

12.
简讯     
苏在演习中发射拦截卫星前不久苏联进行了前所未有的大规模导弹试射演习,首次使用了反卫星武器。演习活动中,首先以卫星拦截开始。靶星宇宙-1375于6月6日发射,进入990×1021公里、倾角65.9度、周期105分的轨道。拦截卫星宇宙-1379进入552×1027公里、倾角65.8度、周期100.3分的轨道。拦截卫星使用的是光热制导,是苏联最新一代的拦截卫星,于1977年开始试验,在1981年第五次试验时获得成功。苏联拦截卫星能力有限,只能拦截较低轨道的卫星,但苏联人显然正在设法研制能拦截同步轨道卫星的反卫星系统,以便在战时能摧毁美国的早期预警卫星和通信卫星。长期以来,美苏都把反卫星系统视为第  相似文献   

13.
太阳同步冻结轨道卫星在经过同一星下点时光照特性和轨道高度相同,便于载荷观测及定标.由多颗太阳同步冻结轨道卫星组成的星座,需要实现星座成员轨道倾角、轨道高度、偏心率矢量和相对轨道幅角的同时保持.提出了基于切向单脉冲的最低燃耗轨道面内保持策略,证明了该策略的稳定性和燃料最优性,给出了太阳同步轨道地方时保持简单算法.仿真证明...  相似文献   

14.
3月14日,美国马丁·马丽埃塔公司的商用大力神3火箭第二次发射,把国际通信卫星6号F 3送入轨道后,第二级火箭和卫星没有分离,两者一起进入近地点169公里,远地点349公里,倾角28.6度,周期89.5分钟的轨道上。而后地面人员用指令使卫星上的近地点发动机和卫星分离。这样,使近地点发动机和第二级火箭一起与卫星分离。接着,地面人员启动卫星上的推力器,使轨道高度提高到近地点259.3公里,远地点407.4公里,周期91分钟的轨道上。在这条轨道上,卫星至少可运行一年而不会再入大气层。国际通信卫星组织的工程人员启动了卫星上所有必要的系统,检查和测试了各系统,他们认为各系统工作令人满意。  相似文献   

15.
正新闻:2019年12月16日15时22分,长征三号乙运载火箭在西昌卫星发射中心以"一箭双星"方式成功发射第五十二、五十三颗北斗导航卫星。至此,所有中圆地球轨道卫星全部发射完毕,北斗三号全球系统核心星座部署完成。解读:北斗三号卫星星座是我国具有独立知识产权的全球卫星导航系统,星座系统由24颗中圆地球轨道(MEO)卫星、3颗地球静止轨道(GEO)卫星和3颗倾斜地球同步轨道(IGSO)卫星组成。  相似文献   

16.
工程试验卫星ETS系列的作用工程试验卫星主要用于试验新研制的火箭和卫星技术。在日本曾发射过ETS-Ⅰ(第一颗中高度卫星)及ETS-Ⅱ(第一颗地球同步卫星),用以验证N-Ⅰ火箭性能。为了验证 N-Ⅱ火箭性能,日本发射了ETS-Ⅳ(转移轨道上的试验卫星)及ETS-Ⅲ(中高度的3轴姿态控制试验卫星)。现在日本已研制了能把约550公斤及两吨的卫星发射到地球同步轨道上的H-Ⅰ火箭及H-Ⅱ火箭,为了验证这两枚新型火箭  相似文献   

17.
正2019年11月27日,印度制图卫星-3(Carto Sat-3)由印度"极轨卫星运载火箭"(PSLV-XL)发射升空。制图卫星-3是"制图卫星"系列的后续型号,采用IRS-2平台建造,是具有高分辨率成像功能的第三代敏捷卫星。印度空间研究组织(ISRO)称,该卫星将取代"印度遥感卫星"(IRS)系列。该星运行在高度509km、倾角97.5°的太阳同步轨道,发射质量1625kg,设计寿命5年。星上成像有效载荷全色模式地面分辨率0.25m,幅宽16km;四谱段多光谱模式分辨率1.13m,幅宽16km;高光谱模式分辨率12m。星上还载  相似文献   

18.
参加Sarsat-Cospas(搜索与营救卫星)系统的国家有法国、美国、苏联,加拿大、挪威和英国),已经同意让该系统继续服务到八十年代末。这决定是在法国图卢兹召开的年度计划会议期间做出的。并且考虑成立一个国际性组织来管理这项永久性工作。目前准备利用地球同步轨道卫星来进一步扩大这个卫星搜索与营救系统的工作。该系统将由同步轨道卫星和目前构成Sarsat-Cospas网络极轨道的卫星组成。  相似文献   

19.
文青 《国际太空》2011,(7):52-59
全球卫星导航系统(GNSS)是一种天基无线电导航定位与时间传递系统,包括卫星星座、地面系统及用户终端设备等三大部分,可为地球表面和近地空间的广大用户提供全天候、全天时、高精度的三维位置、速度及时间信息。“伽利略”(Galileo)卫星星座由30颗卫星组成,这些卫星均匀分布在3个中高度地球轨道上.其星座构形为Walker27/3/1,并有3颗在轨备份星。卫星轨道高度为23616km,轨道倾角为56°,设计寿命20年。  相似文献   

20.
第8颗北斗卫星的成功发射入轨后,与在轨的多颗地球静止轨道(GEO)卫星和地球同步轨道(IGSO)卫星组成基本系统,已经具备在星座覆盖范围内提供连续的、稳定的、全天候的基本服务能力。那么北斗卫星导航系统的基本原理、定位精度和未来发展如何呢?北斗卫星导航系统卫星系统总设计师谢军为我们进行了详细的解答。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号