首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.  相似文献   

2.
Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.  相似文献   

3.
Dosimeter data taken on the APEX (1994–1996), CRRES (1990–1991) and DMSP (1984–1987) satellites have been used to study the low altitude (down to 350 km) radiation environment. Of special concern has been the inner edge of the inner radiation belt due to its steep gradient. We have constructed dose models of the inner edge of the belt from all three spacecraft and put them into a personal computer utility, called APEXRAD, that calculates dose for user-selected orbits. The variation of dose for low altitude, circular orbits is given as a function of altitude, inclination and particle type. Dose-depth curves show that shielding greater than 1/4 in Al is largely ineffectual for low altitude orbits. The contribution of outer zone electrons to low altitude dose is shown to be important only for thin shields and to have significant variation with magnetic activity and solar cycle.  相似文献   

4.
The Space Radiation (SPACERAD) experiments on the Combined Release and Radiation Effects Satellite (CRRES) gathered 14 months of radiation particle data in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. When compared to the NASA radiation belt models AP8 and AE8, the data show the proton model (AP8) does not take into account a second belt formed after major solar flare/shock injection events, and the electron model (AE8) is misleading, at best, in calculating dose in near-Earth orbits. The second proton belt, although softer in energy than the main proton belt, can produce upsets in proton sensitive chips and would produce significant dose in satellites orbiting in it. The MeV electrons observed on CRRES show a significant particle population above 5 MeV (not in the AE8 model) which must be included in any meaningful dose predictions for satellites operating between L-shells of 1.7 and 3.0 RE.  相似文献   

5.
We present measurements of LET spectra for near earth orbits with various inclinations and altitudes. A comparison with calculated LET spectra shows that the contribution from direct ionizing galactic cosmic rays is well described by the models. An additional contribution to the spectra originates from stopping protons and from nuclear interactions of particles with material. In the case of an interaction a large amount of energy is deposited in a small volume by target recoils or target fragments. These events will be called short range (SR) events. For a low inclination orbit radiation belt protons are the main source of these events while galactic protons become more important when increasing the inclination to near polar orbits. We show that the contribution of SR events for orbits with low altitude (324 km) and 57 degrees inclination is comparable to that for an orbit with 28 degrees inclination at a high altitude (510 km).  相似文献   

6.
EPONA is an energetic particle detector system incorporating totally depleted silicon surface barrier layer detectors. Active and passive background shielding will be employed and, by applying various techniques, particles of different species, including electrons, protons, alpha particles and pick-up ions of cometary origin may be detected over a wide spectrum of energies extending from the tens of KeV into the MeV range.

The instrument can operate in two modes namely (a) in a cruise phase or storage mode and (b) in a real time mode. During the real time mode, observations at high spatial (octosectoring) and temporal (0.5s) resolution in the cometary environment permit studies to be made of accelerated particles at the bow shock and/or in the tail of the comet. In conjunction with magnetic field measurements on board Giotto, observations of energetic electrons and their anisotropies can determine whether the magnetic field lines in the cometary tail are open or closed. Further, the absorption of low energy solar particles in the cometary atmosphere can be measured and such data would provide an integral value of the pertaining gas and dust distribution. Solar particle background measurements during encounter may also be used to correct the measurements of other spacecraft borne instruments potentially vulnerable to such radiation.

Solar particle flux measurements, obtained during the cruise phase will, when combined with simultaneous observations made by other spacecraft at different heliographic longitudes, provide information concerning solar particle propagation in the corona and in interplanetary space.  相似文献   


7.
In low earth orbit, the SAA region is the dominant contributor to both proton environment and electron environment from the standpoint of radiation dose for spacecraft lifetime. However, the polar region and the horn region are sometimes strongly disturbed due to large solar and geomagnetic events. During large disturbances, enhancements in proton flux are measured in the polar region, which gives temporary more severe space radiation environment than that given in the SAA region. On the other hand, enhancements in electron flux are measured mainly in the horn region corresponding to the outer radiation belt, which are likely sources of high-energy electrons in the inner radiation belt. These short-term disturbances have another radiation hazard to spacecraft such as single event and electrostatic discharge.  相似文献   

8.
The Russian solar observatory CORONAS-F was launched into a circular orbit on July 31, 2001 and operated until December 12, 2005. Two main aims of this experiment were: (1) simultaneous study of solar hard X-ray and γ-ray emission and charged solar energetic particles, (2) detailed investigation of how solar energetic particles influence the near-Earth space environment. The CORONAS-F satellite orbit allows one to measure both solar energetic particle dynamics and variations of the solar particle boundary penetration as well as relativistic electrons of the Earth’s outer radiation belt during and after magnetic storms. We have found that significant enhancements of relativistic electron flux in the outer radiation belt were observed not only during strong magnetic storms near solar maximum but also after weak storms caused by high speed solar wind streams. Relativistic electrons of the Earth’s outer radiation belt cause volumetric ionization in the microcircuits of spacecraft causing them to malfunction, and solar energetic particles form an important source of radiation damage in near-Earth space. Therefore, the present results and future research in relativistic electron flux dynamics are very important.  相似文献   

9.
Solar particle events as seen on CRRES.   总被引:1,自引:0,他引:1  
High energy proton detectors on the Combined Release and Radiation Effects Satellite (CRRES) were used to measure near-Earth solar protons in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. CRRES data from the major solar particle event on 23-25 March 1991 show conclusively that MeV solar protons can penetrate deep inside the magnetosphere (to an L-shell of 2.5 RE) when a large shock-induced Sudden Storm Commencement (SSC) occurs and significant solar particle populations are present at geosynchronous altitudes. The penetration of solar particles well inside boundaries predicted by Stormer theory occurred during every large solar event of the CRRES mission, as well as many of the smaller ones. Often the deep penetrations occurred simultaneously with the formation of new trapped radiation populations which peak at L-values between 2.3 and 4 RE (depending on particle energy) and which last from days to months.  相似文献   

10.
The allowed cosmic radiation flux accessible to an earth-orbiting spacecraft is a complex function of the satellite position and the geomagnetic cutoff characteristics at each zenith and azimuth angle at each position. We have determined cosmic ray exposure factors for the galactic cosmic ray spectrum for typical shuttle altitudes and inclinations up to 50 degrees. We have utilized d world grid of trajectory-derived cutoff rigidity calculations at 400 km altitude to determine geomagnetic transmission functions that permit a simple and direct calculation of the allowed cosmic ray spectrum to a 400 km satellite orbit. If the interplanetary cosmic ray spectrum is multiplied by the orbit-averaged geomagnetic transmission function the result is the allowed cosmic ray spectrum at the spacecraft.  相似文献   

11.
The hazard of exposure to high doses of ionizing radiation is one of the primary concerns of extended manned space missions and a continuous threat for the numerous spacecraft in operation today. In the near-Earth environment the main sources of radiation are solar energetic particles (SEP), galactic cosmic rays (GCR), and geomagnetically trapped particles, predominantly protons and electrons. The intensity of the SEP and GCR source depends primarily on the phase of the solar cycle. Due to the shielding effect of the Earth's magnetic field, the observed intensity of SEP and GCR particles in a near-Earth orbit will also depend on the orbital parameters altitude and inclination. The magnetospheric source strength depends also on these orbital parameters because they determine the frequency and location of radiation belt passes. In this paper an overview of the various sources of radiation in the near-Earth orbit will be given and first results obtained with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) will be discussed. SAMPEX was launched on 3 July 1992 into a near polar (inclination 82 degrees) low altitude (510 x 675 km) orbit. The SAMPEX payload contains four separate instruments of high sensitivity covering the energy range 0.5 to several hundred MeV/nucleon for ions and 0.4 to 30 MeV for electrons. This low altitude polar orbit with zenith-oriented instrumentation provides a new opportunity for a systematic study of the near-Earth energetic particle environment.  相似文献   

12.
Time-resolved radiation exposure measurements inside the crew compartment have been made during recent Shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28.5 degrees to 57 degrees, and altitudes from 200-600 km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Iso-dose rate contours have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.  相似文献   

13.
A MicroElectronics Test Package (MEP) measured total dose degradation and single event upsets (SEUs) on 60 device types on the Combined Release and Radiation Effects Satellite (CRRES) in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. Simultaneous measurements of the high energy particle environment were used to make a direct cause and effect comparison of the energetic particle backgrounds and microelectronic performance characteristics. The galactic cosmic ray background for the period of the CRRES mission was at a minimum. The SEUs experienced from the cosmic ray background were correspondingly few in number, but surprisingly produced an equal probability of upset over an L-shell range of 8.5 Earth radii (RE) down to less than 3.0 RE. Cosmic ray induced upset frequencies in proton sensitive chips were over 2 orders of magnitude lower than those produced by protons in the heart of the inner proton radiation belts. Multiple upsets, those produced when a single particle upsets more than one memory location, were just as common from protons as from cosmic rays.  相似文献   

14.
Systematical errors of the spacecraft measured high-energy particle fluxes are analyzed. The errors are shown to be inherent to most of the measurements made to be the monitoring of the high-energy radiation in the space. The level of the systematic errors of the measurements varies with energy, thus resulting in distortions of the solar energetic particle spectra based on the measurement data. The erroneous experimental data have resulted in spurious estimates of space radiation environment and give rise to erroneous physical conclusions.  相似文献   

15.
Temporal variations of the radiation belt particle during the magnetic storms are investigated using measurements by the low altitude satellite spectrometer. Along with several known effects, such as the outer radiation belt intensity decrease at the main phase, the radial diffusion with the particle acceleration and the recovery of the radiation belt during the recovery phase, some less known features were investigated, such as the dawn–dusk asymmetry of the radiation belt.  相似文献   

16.
The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L* space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models.  相似文献   

17.
利用IGRF2000模式计算了几个典型轨道辐射带粒子环境并与IGRF1970模式计算的结果进行了比较。计算结果表明,在辐射带的低部,对应某些倾角的能量大于0.1MeV质子的轨道积分通量变化达到2个量级,而通量大10MeV的辐射带质子的轨道积分通量变化达到1个量级;轨道积分通量的最大值变化为1个量级。能量大于0.04MeV辐射带电子的轨道积分通量变化在某些倾角达到3个量级,但轨道积分最大值的变化低于1个量级。1000km以上高度辐射带粒子环境的变化很小。  相似文献   

18.
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20–500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.  相似文献   

19.
Future space missions outside the magnetosphere will subject astronauts to a hostile and unfamiliar radiation environment. An annual dose equivalent to the blood-forming organs (BFOs) of approximately 0.5 Sv is expected, mostly from heavy ions in the galactic cosmic radiation. On long-duration missions, an anomalously-large solar energetic particle event may occur. Such an event can expose astronauts to up to approximately 25 Gy (skin dose) and up to approximately 2 Sv (BFO dose) with no shielding. The anticipated radiation exposure may necessitate spacecraft design concessions and some restriction of mission activities. In this paper we discuss our model calculations of radiation doses in several exo-magnetospheric environments. Specific radiation shielding strategies are discussed. A new calculation of aluminum equivalents of potential spacecraft shielding materials demonstrates the importance of low-atomic-mass species for protection from galactic cosmic radiation.  相似文献   

20.
The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号