首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behavior as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish (Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the video-recordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between: (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests, which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7 s of microgravity are sufficient to induce kinetotic behavior in larval fish).  相似文献   

2.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 micrometers2), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia.  相似文献   

3.
Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (hg; 3 g, 14 days) during development. Following the transfer to 1 g (i.e., stopping the centrifuge) they were separated into normally and kinetotically swimming individuals (the latter performed spinning movements). During hg, the animals were maintained in aquarium water containing alizarin-complexone (AC), a fluorescent calcium tracer. Densitometric measurements of AC uptake into inner ear otoliths (optical density of AC/micrometers2) revealed that the kinetotic individuals had incorporated significantly more AC/calcium than the normally behaving fish. Since the amount of otolithic calcium can be taken as an approximation for otolith weight, the present results indicate that the otoliths of kinetotically swimming samples were heavier than those of the normally behaving larvae, thus exhibiting a higher absolute weight asymmetry of the otoliths between the right vs. the left side of the body. This supports an earlier concept according to which otolith (or statolith) asymmetry is the cause for kinetoses such as human static space sickness.  相似文献   

4.
Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium tracer alizarin complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated. Like most neonate swordtails, Type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal, and the otolithic calcium incorporation in controls of the same batch was symmetric. In Type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetric. These results show that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are--depending on the particular batch of animals--genetically predispositioned. In conclusion, the regulation of otolithic calcium incorporation is guided neuronally, in part via the vestibular nerve and, in part, via a further pathway, which remains to be addressed in the course of future investigations.  相似文献   

5.
It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish. Otolith growth in terms of mineralization mainly depends on the enzyme carboanhydrase (CA), which is responsible for the provision of the pH-value necessary for calcium carbonate deposition. Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (3 g, hg; 6 h) during development and separated into normally and kinetotically swimming individuals following the transfer to 1 g (i.e., stopping the centrifuge; kinetotically behaving fish performed spinning movements). Subsequently, CA was histochemically demonstrated in inner ear ionocytes (cells involved in the endolymphatic ion exchange) and enzyme reactivity was determined densitometrically. It was found that both the total macular CA-reactivity as well as the difference in reactivities between the left and the right maculae (asymmetry) were significantly lower (1) in experimental animals as compared to the 1 g controls and (2) in normally swimming hg-animals as compared to the kinetotically behaving hg-fish. The results are in complete agreement with earlier studies, according to which hypergravity induces a decrease of otolith growth and the otolithic calcium incorporation (visualized using the calcium-tracer alizarin complexone) of kinetotically swimming hg-fish was higher as compared to normally behaving hyper-g animals. The present study thus strongly supports the concept that a regulatory mechanism, which adjusts otolith size and asymmetry as well as otolithic calcium carbonate incorporation towards the gravity vector, acts via activation/deactivation of macular CA.  相似文献   

6.
Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions.  相似文献   

7.
The minimum dose (stimulus x time [gs]) eliciting a visible gravitropic response, has been determined using continuous and intermittent stimulation and two different accelerations at 1 g and 0.l g. The minimum dose of 20-30 gs estimated for microgravity roots and of 50-60 gs for roots grown on a 1 g-centrifuge indicated a higher sensitivity of microgravity roots. Applying intermittent stimuli to microgravity-grown roots, gravitropic responses were observed after two stimuli of 13.5 gs separated by a stimulus free interval of 118 s. The curvature of microgravity-grown roots to lateral stimulation by 0.1 g was remarkably smaller than by 1g in spite of the same doses which were applied to the seedlings. Microscopic investigations corresponding to stimulations in the range of the threshold values, demonstrated small displacement (< 2 micrometers) of statoliths in root statocytes. Accepting the statolith theory, one can conclude that stimulus transformation has to occur in the cytoplasm in close vicinity to the statoliths and that this transformation system was affected during seedling cultivation in microgravity.  相似文献   

8.
Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish (Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.  相似文献   

9.
Gravitropic tip growth of Chara rhizoids is dependent on the presence and functional interaction between statoliths, cytoskeleton and the tip-growth-organizing complex, the Spitzenkorper. Microtubules are essential for the polar cytoplasmic zonation but are excluded from the apex and do not play a crucial role in the primary steps of gravisensing and graviresponse. Actin filaments form a dense meshwork in the subapical zone and converge into a prominent apical actin patch which is associated with the endoplasmic reticulum (ER) aggregate representing the structural center of the Spitzenkorper. The position of the statoliths is regulated by gravity and a counteracting force mediated by actomyosin. Reducing the acceleration forces in microgravity experiments causes a basipetal displacement of the statoliths. Rhizoids grow randomly in all directions. However, they express the same cell shape and cytoplasmic zonation as ground controls. The ultrastructure of the Spitzenkorper, including the aggregation of ER, the assembly of vesicles in the apex, the polar distribution of proplastids, mitochondria, dictyosomes and ER cisternae in the subapical zone is maintained. The unaltered cytoskeletal organization, growth rates and gravitropic responsiveness indicate that microgravity has no major effect on gravitropic tip-growing Chara rhizoids. However, the threshold value of gravisensitivity might be different from ground controls due to the altered position of statoliths, a possibly reduced amount of BaSO4 in statoliths and a possible adaptation of the actin cytoskeleton to microgravity conditions.  相似文献   

10.
Previous investigations revealed that the growth of fish inner ear otoliths depends on the amplitude and the direction of gravity, thus suggesting the existence of a (negative) feedback mechanism. In the course of these experiments, it was shown that altered gravity both affected otolith size (and thus the provision of the proteinacious matrix) as well as the incorporation of calcium. It is hitherto unknown, as of whether sensory hair cells are involved either in the regulation of otolith growth or in the provision of otolithic material (such as protein or inorganic components) or even both. The ototoxic aminoglycoside gentamicin (GM) damages hair cells in many vertebrates (and is therefore used for the treatment of Meniere's disease in humans). The present study was thus designed to determine as of whether vestibular sensory cells are needed for otolith growth by applying GM in order to induce a (functionally relevant) loss of these cells. Developing cichlid fish Oreochromis mossambicus were therefore immersed in 120 mg/l GM for 10 or 21 days. At the beginning and at the end of the experimental periods, the fish were incubated in the calcium-tracer alizarin complexone (AC). After the experiment, otoliths were dissected and the area grown during GM-exposure (i.e., the area enclosed by the two AC labellings) was determined planimetrically. The results showed that incubating the animals in a GM-solution had no effect on otolith growth, but the development of otolith asymmetry was affected. Ultrastructural examinations of the sensory hair cells revealed that they had obviously not been affected by GM-treatment (no degenerative morphological features observed). Overall, the present results suggest that hair cells are not affected by GM concerning their possible role in (general) otolith growth, but that these cells indeed might have transitionally been impaired by GM resulting in a decreased capacity of regulating otolith symmetry.  相似文献   

11.
Eye movements serves to hold the gaze steady or to shift the gaze to an object of interest. On Earth, signals from otoliths can be interpreted either as linear motion or as tilt with respect to gravity. In microgravity, static tilt will no longer give rise to changes in otolith activity. However, linear acceleration as well as angular acceleration stimulate the otolith organ. Therefore, during adaptation to microgravity, otolith-mediated response such as eye movements alter. In this study, we analyzed the eye movements of goldfish during linear acceleration. The eye movements during rectangular linear acceleration along the different body axis were video-recorded. The vertical eye rotations were analyzed frame by frame. In normal fish, leftward lateral acceleration induced downward eye rotation in the left eye and upward eye rotation in the right eye. Acceleration from caudal to rostral evoked downward eye rotation in both eyes. When the direction of acceleration was shifted 15 degrees left, the responses in the left eye disappeared. These results suggested that otolith organs in each side were stimulated differently.  相似文献   

12.
During the entire evolution of life on Earth, the development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hypergravity (centrifuge) or microgravity (spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on these questions, comprising gravistimulated effects on invertebrates and vertebrates (with the exception of mammals, since respective biomedically oriented reviews abound), focusing on developing fish as model systems, with special emphasis on the effect of altered gravity on the developing brain and vestibular system, comprising investigations on behaviour and plastic reactivities of the brain and inner ear. Clues and insights into the possible basic causes of space motion sickness-phenomena (SMS; a kinetosis) are provided as well as perspectives in regard to future work to be done including studies on the ISS concerning the analysis of gravistimulated effects on developmental issues (imprinting phase for graviperception?).  相似文献   

13.
One hypothesis for the explanation of the so-called "loop-swimming" behaviour in fish when being subjected to reduced gravity assumes that the activities of the differently weighted otoliths of the two labyrinths are well compensated on ground but that a functional asymmetry is induced in weightlessness, resulting in a tonus asymmetry of the body and by this generating the "loop-swimming" behaviour. The basis of this abnormal behaviour has to be searched for in the central nervous system (cns), where the signal-transduction from the inner ear- related signal internalisation to the signal response takes place. Circuits within the CNS of fish, that could possibly generate the "loop-swimming", might be as follows: An asymmetric activation of vestibulospinal circuits would directly result in a tonus asymmetry of the body. An asymmetric activation of the oculomotor nucleus would generate an asymmetrical rotation of the eyes. This would cause in its turn asymmetric images on the two retinas, which were forwarded to the diencephalic accessory optic system (AOS). It is the task of the AOS to stabilize retinal images, thereby involving the cerebellum, which is the main integration center for sensory and motor modalities. With this, the cerebellar output would generate a tonus asymmetry of the body in order to make the body of the fish follow its eyes. Such movements (especially when assuming an open loop control) would end up in the aforementioned "loop-swimming" behaviour.  相似文献   

14.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses--particularly of fish--observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena.  相似文献   

15.
In order to investigate the movement of a statolith complex along the longitudinal axis of root cap statocytes under different mass accelerations, a series of experiments with Lepidium sativum L. in an automatically operating centrifuge during the Bion-11 satellite flight and on a centrifuge-clinostat have been performed. During spaceflight, roots were grown for 24 h under root-tip-directed centrifugal 1-g acceleration, then exposed to microgravity for 6, 12 and 24 min and chemically fixed. During the first 6 min of microgravity, the statoliths moved towards the cell center with a mean velocity of 0.31 +/- 0.04 micrometers/min, which decreased to 0.12 +/- 0.01 micrometers/min within subsequent 12-24 min period. The mean relative position of the statolith complex in respect to the distal cell wall (% of total cell length) increased from 24.0 +/- 0.5% in 1 g-grown roots to 38.8 +/- 0.8% in roots exposed for 24 min to microgravity, but remained smaller than in roots grown continuously in microgravity (48.0 +/- 0.7%). The properties of the statolith movement away from the distal pole of the statocyte were studied in roots grown for 24 h vertically under 1 g and then placed for 6 min on a fast rotating clinostat (50 rpm) or 180 degrees inverted. After 2 min of both treatments, the mean relative position of the statoliths increased by about 10% versus its initial position. Later on, the proximal displacement of amyloplasts slowed down under simulated weightlessness, while it proceeded at a constant velocity under 1 g inversion. In roots grown on the clinostat and then exposed to 1 g in the longitudinal direction, amyloplast sedimentation away from the central region of statocyte was similar at the beginning of distal and proximal 6-min 1-g stimulation. However, at the end of this period statolith displacement was more pronounced in proximal direction as compared to distal. It is proposed that statolith position in the statocyte of a vertical root is controlled by the force of gravity, however, the intracellular forces, first of all those generated by the network of the cytoskeleton, are manifested when an usual orientation of the organ is changed or the statocytes are exposed to microgravity and clinorotation.  相似文献   

16.
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.  相似文献   

17.
The swimming behaviour of adult and neonate swordtail fish Xiphophorus helleri was qualitatively analysed from video recordings taken throughout the STS 89 spaceshuttle mission from launch to landing and thereafter. After the flight, the swimming behaviour of neonate samples was quantitatively assessed in the course of the readaptation to 1g earth gravity at days 0, 1 and 4 after recovery. Regarding the swimming behaviour during the mission, the adult fish swam thigmotactically (i.e., responding to tactile stimuli) along the walls of their aquarium, but like the neonates, they did not show any aberrant behavioural patterns. This indicates that they could easily adapt themselves to microgravity. On mission day 9, however, looping responses (most probably initiated by mechanical disturbances) occurred indicating a continuously performed "C-start" escape response (the respective body bend looks like the letter "C"). Immediately after landing (observed in videos recorded onboard the space shuttle), the adults performed a head-up swimming beating heavily with the caudal and pectoral fins; this aberrant behaviour gradually decreased during the first hours after recovery.  相似文献   

18.
It has been suggested that the changes of otolith mass during the otolith development in altered gravity conditions as well as the growth of otoliths in fishes in normal conditions are determined by the feedback between the otolith dynamics and the processes that regulate otolith growth. This hypothesis originates from the pendulum model of an otolith (de Vries, 1950), in which otolith mass is a parameters. The validity of this hypothesis is tested by comparing the pendulum model with a simplified spatially distributed model of an otolith. It was shown that when the otolith plate (otoconial layer) was spatially distributed and fixed to the macular surface, the mechanical sensitivity of the otolith does not depend on the total otolith mass and its longitudinal dimensions. It is determined by otolith thickness, Young's modulus, and the viscosity of the gel layer of the growing otolith. These parameters may change in order to secure otolith sensitivity under altered dynamic conditions (e.g., in microgravity). Possible hypotheses regarding the relationship between the otolith growth, otolith dynamics and animal growth are proposed and discussed here.  相似文献   

19.
Medaka fish had performed mating behavior successfully in space for the first time among vertebrate, and the eggs which were laid in space developed normally, and hatched during the space travel of 15 days aboard the space shuttle in the second International Microgravity Laboratory (IML-2) mission in 1994 (Ijiri 1994). But there has been few studies whether microgravity affects the development of rather complex tissues in this fish. Investigating this problem, we focused on the organogenetic events in the retina in developing Medaka under normal and simulated microgravity conditions (by a three-dimensional clinostat, 3D-clinostat). Our results showed that both normal and 3D-clinostat-treated Medaka embryos developed on almost equal time course. Moreover, we investigated the development of the retina in normal and 3D-clinostat-treated embryos, but there were no differences in organogenesis of their retina. Lamination of retina occurred almost at equal timing and the expressions of opsin genes in the 3D-clinostat-treated group also began almost at the same time as control. Our observations suggest that there were no definite effects of simulated microgravity on the organizations of a complex tissue such as retina in developing fish embryos.  相似文献   

20.
Rotation at 4, 10, 50 and 100 rpm on a horizontal clinostat and in microgravity exerts limited effects on the morphogenesis of lettuce and cress root statocytes and statoliths if compared with the vertical control or 1 g spaceflight reference centrifuge. However, the average distance of statoliths from the distal wall increases. The pattern of plastid location of microgravity-grown and that of clino-rotated samples has been determined at 10, 50, and 100 rpm. Experiments on the centrifuge-clinostat and spaceflight centrifuge (acceleration forces of 0.005 to 1 g) revealed that the average statolith location depends on the amplitude of acropetally or basipetally directed mass acceleration. Decreasing the acropetally directed force from 1 g to 0.4 g dislocates statoliths towards the cell center possibly mediated by the elastic forces of the cytoskeleton. In statocytes formed on the clinostat or in microgravity, the majority of statoliths are located at the center of the cell. To force the statoliths from the center of the statocyte towards one of its poles, a threshold mass acceleration of 0.01 g is required. Statocytes with centrally-located statoliths are considerably more effective in transducing a gravistimulus than those with distally-located plastids. The latent time of the graviresponse is shorter and the response itself is enhanced in roots grown on the clinostat compared to vertically grown samples. The early phases of graviperception are independent of root growth conditions since presentation time and g-threshold are similar for roots grown stationary and those on a clinostat. We propose a sequence of events in gravitropic stimulation that considers not only the lateral displacement of statoliths, as predicted by the starch-statolith hypothesis, but also its longitudinal motion, together with differential gravisensitivity of mechanotransducing structures along the lower-most longitudinal cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号