首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The asteroid and cometary impact hazard has long been recognised as an important issue requiring risk assessment and contingency planning. At the same time asteroids have also been acknowledged as possible sources of raw materials for future large-scale space engineering ventures. This paper explores possible synergies between these two apparently opposed views; planetary protection and space resource exploitation. In particular, the paper assumes a 5 tonne low-thrust spacecraft as a baseline for asteroid deflection and capture (or resource transport) missions. The system is assumed to land on the asteroid and provide a continuous thrust able to modify the orbit of the asteroid according to the mission objective. The paper analyses the capability of such a near-term system to provide both planetary protection and asteroid resources to Earth. Results show that a 5 tonne spacecraft could provide a high level of protection for modest impact hazards: airburst and local damage events (caused by 15–170 m diameter objects). At the same time, the same spacecraft could also be used to transport to bound Earth orbits significant quantities of material through judicious use of orbital dynamics and passively safe aero-capture manoeuvres or low energy ballistic capture. As will be shown, a 5 tonne low-thrust spacecraft could potentially transport between 12 and 350 times its own mass of asteroid resources by means of ballistic capture or aero-capture trajectories that pose very low dynamical pressures on the object.  相似文献   

2.
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles.  相似文献   

3.
This paper presents an innovative space mission devoted to the survey of the small Earth companion asteroid by means of nano platforms. Also known as the second Earth moon, Cruithne, is the target identified for the mission. Both the trajectory to reach the target and a preliminary spacecraft budget are here detailed. The idea is to exploit high efficient ion thrusters to reduce the propellant mass fraction in such a high total impulse mission (of the order of 1e6 Ns). This approach allows for a 100 kg class spacecraft with a very small Earth escape energy (5 km2/s2) to reach the destination in about 320 days. The 31% propellant mass fraction allows for a payload mass fraction of the order of 8% and this is sufficient to embark on such a small spacecraft a couple of nano-satellites deployed once at the target to carry out a complete survey of the asteroid. Two 2U Cubesats are here considered as representative payload, but also other scientific payloads or different platforms might be considered according with the specific mission needs. The small spacecraft used to transfer these to the target guarantees the manoeuvre capabilities during the interplanetary journey, the protection against radiations along the path and the telecommunication relay functions for the data transmission with Earth stations. The approach outlined in the paper offers reliable solutions to the main issues associated with a deep space nano-satellite mission thus allowing the exploitation of distant targets by means of these tiny spacecraft. The study presents an innovative general strategy for the NEO observation and Cruithne is chosen as test bench. This target, however, mainly for its relevant inclination, requires a relatively large propellant mass fraction that can be reduced if low inclination asteroids are of interest. This might increase the payload mass fraction (e.g. additional Cubesats and/or additional scientific payloads on the main bus) for the same 100 kg class mission.  相似文献   

4.
Electrostatic space radiation shielding   总被引:2,自引:0,他引:2  
For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.  相似文献   

5.
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.  相似文献   

6.
Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (∼10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (∼10 km) where range evaluation repetition rates of ∼100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.  相似文献   

7.
8.
The Moon is immersed in plasma environment. The most interesting challenge of the lunar plasma– field environment is that it is alternatively dominated by the extended but variable outer atmosphere of the Earth – the magnetosphere – and by the extended but highly variable solar atmosphere – the solar wind. Understanding the plasma environment and its interaction with the lunar surface will be beneficial to both manned and robotic surface exploration activities and to scientific investigations. Presented is a preliminary map of variations of lunar surface electric potential over the day side and night side using probe equations and a discussion on dust dynamics in this E-field structure using the data from Electron Reflectometer in Lunar Prospector spacecraft during 1998–1999. On the day side, potential is around 5 V and on the night side it reaches up to −82 V. On the night side region, only highly energetic electrons can overcome this large negative potential. The variation at electron temperature (Te) strongly reflects in the surface potential. The potential reaches to a value of −82 V for Te = 58 eV. Surface charging causes the electrostatic transport of charged dust grains. Dust grain size of 0.1 μm shows a levitation height of 4.92 m on lunar day side, 748 m on terminator region and 3.7 km on the night side. The radius of maximum sized grain to be lofted, Rmax, peaks at the terminator region (Rmax = 0.83 μm). At the transition region dust levitation is almost absent. This region is most suited for exploration activities as the region is free from hazards caused by lunar dust.  相似文献   

9.
Inter-spacecraft electrostatic force (Coulomb force) is desirable for close formation flying control because of its propellant-less and free contaminate characteristics attributed to the propellant exhaust emission. This paper presents robust optimal sliding mode control to deal with the problem of thruster saturation in tracking the formation trajectory for Coulomb spacecraft formation flying. The robust controller design is based on optimal control theory as a linear quadratic system, and it is augmented with an integral sliding mode control technique. The stability of the closed-loop system is guaranteed using the second Lyapunov method. The developed controller outperforms the existing ones, because it has a higher degree of fine-tuning to cope with the uncertainty. Numerical simulations are employed to confirm the efficiency of the developed controller.  相似文献   

10.
围绕航天器向大尺度、远距离发展所涉及的大尺度部件在轨展开技术中新工艺、新材料、新结构等,对现有航天器大尺度部件的折展机构进行了统计与分析,系统梳理了在轨航天器折展机构的技术参数、结构与组成等。介绍了折纸艺术、自回弹材料与记忆合金等新工艺、新材料在航天器太阳帆板、天线等大尺度部件上的应用。重点分析并梳理了新型结构的特性及其工作原理,包括:充气展开式、单轴旋转式、径向扩展式、单元重构式、延长伸展式等。最后,结合即将开展的载人登月与月球基地建设、太阳系探测等深空探测任务,对在轨航天器大尺度部件的折展结构与机构的发展趋势进行了展望。  相似文献   

11.
On October 8, 2004, the Cluster and Double Star spacecraft crossed the near-Earth (12–19 RE) magnetotail neutral sheet during the recovery phase of a small, isolated substorm. Although they were separated in distance by ∼7 RE and in time by ∼30 min, both Cluster and Double Star observed steady, but highly structured Earthward moving >1000 km/s high speed H+ beams in the PSBL. This paper utilizes a global magnetohydrodynamic (MHD) simulation driven by Wind spacecraft solar wind input to model the large-scale structure of the PSBL and large-scale kinetic (LSK) particle tracing calculations to investigate the similarities and differences in the properties of the observed beams. This study finds that the large-scale shape of the PSBL is determined by the MHD configuration. On smaller scales, the LSK calculations, in good qualitative agreement with both Cluster and Double Star observations, demonstrated that the PSBL is highly structured in both time and space, on time intervals of less than 2 min, and spatial distances of the order of 0.2–0.5 RE. This picture of the PSBL is different from the ordered and structured region previously reported in observations.  相似文献   

12.
以太阳风粒子、深空尘埃等为目标的采样返回探测任务是空间科学与深空探测研究的热点方向之一。对“星尘号”“起源号”两个典型采样返回探测器的构型进行了分析,并梳理了其主要构型特点。结合我国月地高速再入返回飞行器的构型特点,提出了一种深空粒子采样返回探测器构型的设想:总体构型由长方形主体和流线型返回器组成,主体构型适应于承载返回器和其他装器设备,返回器构型适应于样品收集和再入返回气动外形。设计方案采用了充气式采样器进行粒子收集,具有体积小、重量轻、折叠效率高、展开可靠、工程实施简单等特点,并采用了可重复收拢展开的太阳翼,能够适应收集不同类型深空粒子的需求。  相似文献   

13.
As ASTROD I travels through space, its test mass will accrue charge due to exposure of the spacecraft to high-energy particles. This test mass charge will result in Coulomb forces between the test mass and the surrounding electrodes. In earlier work, we have used the GEANT 4 toolkit to simulate charging of the ASTROD test mass due to cosmic-ray protons of energies between 0.1 and 1000 GeV at solar maximum and at solar minimum. Here we use GEANT 4 to simulate the charging process due to solar energetic particle events and interplanetary electrons. We then estimate the test mass acceleration noise due to these fluxes. The predicted charging rates range from 2247 e+/s to 47,055 e+/s, at peak intensity, for the four largest SEP events in September and October 1989. Although the noise due to charging exceeds the ASTROD I budget for the two larger events, it can be suppressed through continuous discharging. The acceleration noise during the two small events is well below the design target. The charging rate of the ASTROD I test mass due to interplanetary electrons in this simulation is about −11% of the cosmic-ray protons at solar minimum, and over −37% at solar maximum. In addition to the Monte Carlo uncertainty, an error of ±30% in the net charging rates should be added to account for uncertainties in the spectra, physics models and geometry implementations.  相似文献   

14.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   

15.
The bipolar electric field solitary (EFS) structures have been frequently observed in the near Earth plasma regions, such as auroral zone, magnetopause, cusp regions, and magneto-tail. Sometimes these structures are observed as offset bipolar structures. In this paper, the properties of the offset bipolar EFS structures parallel to the magnetic field are studied with an ion fluid model in a cylindrical symmetry by considering electrostatic condition. The model results show that the offset bipolar EFS structures can develop from both ion-acoustic waves and ion cyclotron waves, and propagate along the magnetic field line in the space plasmas if plasma satisfies some conditions. The offset bipolar EFS structures can have both polarities. It will be first negative pulse and then positive pulse if the initial electric field E0 < 0 or reverse in order if E0 > 0. The amplitude of the offset bipolar EFS structures first decreases and then increases with the wave propagation velocity. Some results from our model are consistent with the observations.  相似文献   

16.
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range 1 ? Z ? 28 (H–Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as generic polyethylene (PE). The shield thickness is represented by a 25 g/cm2 spherical shell. Although, one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we further present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE.  相似文献   

17.
On TC-1 (Tan Ce 1), the equatorial spacecraft of the Double Star mission, a strong spin-synchronized magnetic interference from the solar panels was observed. In-flight correction techniques for spinning spacecraft that are based on minimizing spin tones in the spin-aligned component and in the magnitude of the ambient magnetic field are therefore not possible in this case. However, due to the fortunate situation that the spacecraft carries two flux-gate magnetometers on the same boom (at 0.5 m distance from each other), the spacecraft field effects could be removed from the spin-averaged data to achieve 0.2 nT relative accuracy, by using a gradiometer technique. Methodology and results are presented. The obtained accuracy allows the use of the data in multi-spacecraft studies together with the Cluster satellites.  相似文献   

18.
We suggest that LISA Pathfinder, a technology demonstrator for the future gravitational wave observatory LISA, could be used to carry out a direct experimental test of Modified Newtonian Dynamics (MOND). The LISA Pathfinder spacecraft is currently being built and the launch date is just a few years away. No modifications of the spacecraft are required, nor any interference with its nominal mission. The basic concept is to fly LISA Pathfinder through the region around the Sun-Earth saddle point, in an extended mission phase, once the original mission goals are achieved. We examine various strategies to reach the saddle point, and find that the preferred strategy, yielding relatively short transfer times of just over 1 year, probably involves a lunar fly-by. LISA Pathfinder will be able to probe the intermediate MOND regime, i.e. the transition between deep MOND and Newtonian gravity. We present robust estimates of the anomalous gravity gradients that LISA Pathfinder should be exposed to, based on MONDian effects as derived from the Tensor-Vector-Scalar (TeVeS) theory. The spacecraft speed and spatial scale of the MOND signal combine in a way that the spectral signature of the signal falls precisely into LISA Pathfinder’s measurement bandwidth. We find that if the gravity gradiometer on-board the spacecraft achieves its currently predicted sensitivity, these anomalous gradients could not just be detected, but measured in some detail.  相似文献   

19.
This paper demonstrates an initial orbit determination method that solves the problem by a genetic algorithm using two well-known solutions for the Lambert’s problem: universal variable method and Battin method. This paper also suggests an intuitive error evaluation method in terms of rotational angle and orbit shape by separating orbit elements into two groups. As reference orbit, mean orbit elements (original two-lines elements) and osculating orbit elements considering the J2 effect are adopted and compared. Our proposed orbit determination method has been tested with actual optical observations of a geosynchronous spacecraft. It should be noted that this demonstration of the orbit determination is limited to one test case. This observation was conducted during approximately 70 min on 2013/05/15 UT. Our method was compared with the orbit elements propagated by SGP4 using the TLE of the spacecraft. The result indicates that our proposed method had a slightly better performance on estimating orbit shape than Gauss’s methods and Escobal’s method by 120 km. In addition, the result of the rotational angle is closer to the osculating orbit elements than the mean orbit elements by 0.02°, which supports that the estimated orbit is valid.  相似文献   

20.
The Pioneer anomaly, an unexpected acceleration of the Pioneer 10 and 11 spacecraft of ∼8.5 × 10−10 ms−2 directed towards the inner Solar System, has been of great interest for the physics community during the past decade: considered explanations range from new physical concepts to conventional mechanism. It is shown that non-isotropic outgassing of the complete spacecraft structure is comparable in magnitude and direction to the effect and should be considered as a significant contribution to the anomalous acceleration. Although gas leaks from e.g. the propulsion system and propulsive mass loss mechanism have been discarded as possible explanations for the anomaly, the arguments used against such mechanisms do not apply to global outgassing from the spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号