首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 906 毫秒
1.
An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind, flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density (N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from 2°-3°(at the Earth's orbit, it is equivalent to 3.6-5.4h, or (5.4-8.0)×106km) to the minimum about 0.025°, i.e. the angular size of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift) current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore, the value of β= 8π[N(Te + Tp)]/B2 within the tube exceeds the value of βoutside the tube. In many cases total pressure P = N(Te + Tp) + B2/8πis almost constant within and outside the tubes at any one of the aforementioned scales.  相似文献   

2.
The results of cross-correlation analysis between electrons fluxes (with energies of > 0.6MeV, > 2.0 MeV and > 4.0MeV), geomagnetic indices and solar wind parameters are shown in the paper. It is determined that the electron fluxes are controlled not only by the geomagnetic indices, but also by the solar wind parameters, and the solar wind velocity demonstrates the best relation with the electron fluxes. Numerical value of the relation efficiency of external parameters with the highly energetic electrons fluxes shows a periodicity. It is presented here the preliminary results of daily averaged electrons fluxes forecast for a day ahead on the basis of the model of neuron networks.  相似文献   

3.
From Aug. 2013 to Oct. 2015, a Rayleigh lidar has been used to study the middle atmosphere at Golmud (36.25°N, 94.54°E), Qinghai, located in the northeastern part of the Tibetan Plateau. Mesospheric density profiles from 50 to 90 km were retrieved based on 205 nights of lidar observation, with a total of 1616 hours of operation. We compared our lidar density measurements with SABER observations onboard TIMED satellite and MSIS-00 model data. The results showed that the annual mean density measured by lidar agreed well with SABER data, but both were lower than that of MSIS-00. All datasets exhibited dominant annual oscillation in the mesosphere. From 63 to 85 km, the annual amplitude of lidar density is larger than those of SABER and MSIS-00. PDD (Percentage of Density Difference) was calculated to investigate the mesospheric density climatology. The largest density variations of lidar, MSIS-00, and SABER occurred at around 72 km. Both lidar and SABER PDD reached their maximum in May, about one month earlier than the MSIS-00; while the minimum PDD appeared in late December for all datasets.   相似文献   

4.
5.
In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992–1993. Ulysses was 4–5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below ∼30o were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average θnBo = 67o). The reverse shocks were more oblique (average θnBo = 52o), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (∼−30° to −35°) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique.  相似文献   

6.
A Michelson interferometer was used to observe the hydroxyl (OH) emission in the upper mesosphere at the King Sejong Station (62.22° S, 301.25° E), Antarctica. The instrument was installed in February 1999 and has been in routine operation since then. An intensive operational effort has resulted in a substantial data set between April and June, 1999. A spectral analysis was performed on individual data to examine the information of dominant waves. A harmonic analysis was also carried out on the monthly average data to investigate the characteristics of the major low frequency oscillations. The 12-hr temperature oscillations exhibit a striking agreement with a theoretical tidal model, supporting the tidal (migrating) origin. The 8-hr wave is found to be persistent and dominant, reflecting its major role in the upper mesospheric dynamics at the given latitude. The 6-hr oscillation is observed only in May with its value close to the prediction for zonally symmetric tides.  相似文献   

7.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

8.
9.
We present an investigation of the influence of the 27-day solar flux variations, caused by solar rotation, on the ionosphere parameters such as the F2 layer critical frequency (foF2) and the total electron content (TEC). Our observational data were obtained with the Irkutsk Digisonde (DPS-4) located at 52.3 North and 104.3 East during the period from 2003 to 2005. In addition, we use TEC data from the Global Ionosphere Maps (GIM) based on Global Positioning System (GPS) satellites. The solar radiation flux at a wavelength of 10.7 cm (F10.7 index) is used as an index characterizing the solar activity level. A good correlation between observed ionosphere parameters and solar activity variations is found especially in autumn-to-winter season. We estimate the impact of the 27-day solar flux variations on the day-to-day variability and determine the time delay of the ionosphere response.  相似文献   

10.
11.
The equatorial ionosphere has been known to become highly disturbed and thus rendering space-based navigation unreliable during space weather events, such as geomagnetic storms. Modern navigation systems, such as the Global Positioning System (GPS) use radio-wave signals that reflect from or propagate through the ionosphere as a means of determining range or distance. Such systems are vulnerable to effects caused by geomagnetic storms, and their performance can be severely degraded. This paper analyses total electron content (TEC) and the corresponding GPS scintillations using two GPS SCINDA receivers located at Makerere University, Uganda (Lat: 0.3o N; Lon: 32.5o E) and at the University of Nairobi, Kenya (Lat: 1.3o S; Lon: 36.8o E), both in East Africa. The analysis shows that the scintillations actually correspond to plasma bubbles. The occurrence of plasma bubbles at one station was correlated with those at the other station by using observations from the same satellite. It was noted that some bubbles develop at one station and presumably “die off” before reaching the other station. The paper also discusses the effects of the geomagnetic storm of the 24–25 October 2011 on the ionospheric TEC at the two East African stations. Reductions in the diurnal TEC at the two stations during the period of the storm were observed and the TEC depletions observed during that period showed much deeper depletions than on the non-storm days. The effects during the storm have been attributed to the uplift of the ionospheric plasma, which was then transported away from this region by diffusion along magnetic field lines.  相似文献   

12.
The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs, (Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the He-liospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs. The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax> 10cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line (sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax> 10cm-3.  相似文献   

13.
The hourly and daily measured clear-sky global solar radiation (G) and biologically important effective erythematic radiation (EER) incident on a horizontal surface at Cairo, Egypt (latitude 30° 05′ N & Longitude 31° 15′ E), during the period from January 1995 to December 2005 are used in this paper. The relationship between daily integrated totals of EER and the daily totals of broadband global solar radiation (250–2800 nm) is established. The temporal variability of the percentage ratio of the total daily erythema to total daily broadband solar global irradiation (EER/G) is determined. The monthly and the seasonal averages of the extraterrestrial UVB solar radiation, Mesurad and estímated UVB solar radiation and clearness index KtUVB of UVB radiation are discussed. The average monthly mean variation of slant ozone (Z) and UVB transmission (KtUVB) at the present work are found. The two variables show an opposite seasonal behavior, and the average monthly of slant ozone column and UVB transmission values shows the relationship between them in a clearer way than those of daily values. The estimated values of UVB solar radiation a good agreement with the measured values of the UVB solar radiation, the difference between the estimated and measured values of UVB solar radiation varies from 1.2% to 2.8%. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) are presented and the correction factors are determined for removal of the ozone cycle. The seasonal variability of EER/G is also discussed. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) is presented and the correction factors are determined for removal of the ozone cycle.  相似文献   

14.
15.
In this study, 30 storm sudden commencement (SSC) events during the period 2001–2007 for which daytime vertical E × B drift velocities from JULIA radar, Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude), Peru and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude) and Piura (geographic latitude 5.21°S, geographic longitude 279.41°E, 6.81°N dip latitude), in Peru, were considered. It is observed that a positive correlation exists between peak value of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of SSC. A qualitative analysis made after selecting the peak values of daytime vertical E × B drift velocity and ΔH showed that 57% of the events have daytime vertical E × B drift velocity peak in the magnitude range 20–30 m/s and 63% of the events have ΔH peak in the range 80–100 nT. The maximum probable (45%) range of time of occurrence of peak value for both vertical E × B drift velocity and ΔH during the daytime hours were found to be the same, i.e., 10:00–12:00 LT. A strong positive correlation was also found to exist between the daytime vertical E × B drift velocity and ΔH for all the three consecutive days of SSC, for all the events considered. To establish a quantitative relationship between day time vertical E × B drift velocity and ΔH, linear and polynomial (order 2 and 3) regression analysis (Least Square Method (LSM)) were carried out, considering the fully disturbed day after the commencement of the storm as ‘disturbed period’ for the SSC events selected for analysis. The formulae indicating the relationship between daytime vertical E × B drift velocity and ΔH, for the ‘disturbed periods’, obtained through the regression analysis were verified using the JULIA radar observed E × B drift velocity for 3 selected events. Root Mean Square (RMS) error analysis carried out for each case suggest that polynomial regression (order 3) analysis provides a better agreement with the observations from among the linear, polynomial (order 2 and 3) analysis.  相似文献   

16.
The source region and propagation mechanism of low latitude whistlers (Geomag. lat. <30°) have puzzled scientific community for last many decades. In view of recent reports, there is consensus on the source region of low latitude whistlers in the vicinity of the conjugate point. But the plausible conditions of ionospheric medium through which they travel are still uncertain. In addition to that, the whistlers in daytime are never observed at geomagnetic latitudes less than 20°. Here, for the first time, we present a rare observations of whistlers during sunlit hours from a very low-latitude station Allahabad (Geomag. Lat: 16.79°N, L = 1.08) in India on 04 February 2011. More than 90 whistlers are recorded during 1200–1300 UT during which the whole propagation path from lightning source region to whistler observation site is under sunlit. The favorable factors that facilitated the whistlers prior to the sunset are investigated in terms of source lightning characteristics, geomagnetic and background ionospheric medium conditions. The whistler activity period was found to be geomagnetically quiet. However, a significant suppression in ionospheric total electron content (TEC) compared to its quiet day average is found. This shows that background ionospheric conditions may play a key role in low latitude whistler propagation. This study reveals that whistlers can occur under sunlit hours at latitudes as low as L = 1.08 when the source lightning and ionospheric medium characteristics are optimally favorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号