首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
The Voyager 1 measurements made during the Titan flyby reveal that Saturn's rotating magnetospheric plasma interacts directly with Titan's neutral atmosphere and ionosphere. This results from the lack of an intrinsic magnetic field at Titan. The interaction induces a magnetosphere which deflects the flowing plasma around Titan and forms a plasma wake downstream. Within the tail of the induced magnetosphere, ions of ionospheric origin flow away from Titan. Just outside Titan's magnetosphere, a substantial ion-exosphere forms from an extensive hydrogen-nitrogen exosphere. The exospheric ions are picked up and carried downstream into the wake by the plasma flowing around Titan. Mass loading produced by the addition of exospheric ions slows the wake plasma down considerably in the vicinity of the magnetopause.  相似文献   

2.
Observations of unusually large magnetic fields in the ionosphere indicate periods of maximum stress on Titan’s ionosphere and potentially of the strongest loss rates of ionospheric plasma. During Titan flyby T42, the observed magnetic field attained a maximum value of 37 nT between an altitude of 1200 and 1600 km, about 20 nT stronger than on any other Titan pass and close to five times greater in magnetic pressure. The strong fields occurred near the corotation-flow terminator rather than at the sub-flow point, suggesting that the flow which magnetized the ionosphere was from a direction far from corotation and possibly towards Saturn. Extrapolation of solar wind plasma conditions from Earth to Saturn using the University of Michigan MHD code predicts an enhanced solar wind dynamic pressure at Saturn close to this time. Cassini’s earlier exits from Saturn’s magnetosphere support this prediction because the Cassini Plasma Spectrometer instrument saw a magnetopause crossing three hours before the strong field observation. Thus it appears that Titan’s ionosphere was magnetized when the enhanced solar wind dynamic pressure compressed the Saturnian magnetosphere, and perhaps the magnetosheath magnetic field, against Titan. The solar wind pressure then decreased, leaving a strong fossil field in the ionosphere. When observed, this strong magnetic flux tube had begun to twist, further enhancing its strength.  相似文献   

3.
Cyanobutadiyne has been synthesized starting from the mono or bistributylstannyl derivative of 1,3-butadiyne and p-toluenesulfonyl cyanide. The UV spectrum of HC5N and the 13C NMR spectrum of the deuterocyanobutadiyne DC5N have been recorded for the first time. Cyanobutadiyne has been detected in the photolysis of mixtures of gases observed on Titan. Its formation starting from cyanoacetylene and acetylene also occurs in the presence of huge amounts of dinitrogen, the major constituent of the Titan’s atmosphere. The application of these findings to the atmosphere of Titan is discussed. The chemistry and photochemistry of cyanobutadiyne have been investigated. A photoadduct has been observed in the photolysis of cyanoacetylene and ethanethiol and, a univocal synthesis of this compound was performed by a nucleophilic addition reaction.  相似文献   

4.
A semigray (shortwave and longwave) surface temperature model is developed from conditions on Venus, Earth and Mars, where the greenhouse effect is mostly due to carbon dioxide and water vapor. In addition to estimating longwave optical depths, parameterizations are developed for surface cooling due to shortwave absorption in the atmosphere, and for convective (sensible and latent) heat transfer. An approximation to the Clausius–Clapeyron relation provides water–vapor feedback. The resulting iterative algorithm is applied to three “super-Earths” in the Gliese 581 system, including the “Goldilocks” planet g (Vogt et al., 2010). Surprisingly, none of the three appear habitable. One cannot accurately locate a star’s habitable zone without data or assumptions about a planet’s atmosphere.  相似文献   

5.
Recent discoveries of water ice trapped within lunar topsoil (regolith) have placed a new emphasis on the recovery and utilization of water for future space exploration. Upon heating the lunar ice to sublimation, the resulting water vapor could theoretically transmit through the lunar regolith, to be captured on the surface. As the permeability of lunar regolith is essential to this process, this paper seeks to experimentally determine the permeability and flow characteristics of various gas species through simulated lunar regolith (SLR). Two different types of SLR were compacted and placed into the permeability setup to measure the flow-rate of transmitted gas through the sample. Darcy’s permeability constant was calculated for each sample and gas combination, and flow characteristics were determined from the results. The results show that Darcy’s permeability constant varies with SLR compaction density, and identified no major difference in permeable flow between the several tested gas species. Between the two tested SLR types, JSC-1A was shown to be more permeable than NU-LHT under similar conditions. In addition, a transition zone was identified in the flow when the gas pressure differential across the sample was less than ∼40 kPa.  相似文献   

6.
This paper first describes briefly some of the forefront global simulations of Titan’s atmosphere that have been carried out up to now. In these experiments, an initial gaseous mixture of N2/CH4 is submitted to a single energy source and the retrieved gas and/or solid phase(s) is/are analyzed by different techniques.  相似文献   

7.
Various aerial platforms intended for long endurance survey of the Titan surface are presented. A few novel concepts are introduced, including a heated methane balloon and a balloon with a tethered wind turbine. All the concept options are predicted to have lower scientific payload fractions than the Huygens probe. It is concluded that the selection of the best aerial platform option depends on more accurate mass estimates and a clear decision on whether, or not, in situ surface composition measurements are required in conjunction with aerial remote sensing.  相似文献   

8.
The European Space Agency’s Huygens probe separated from the NASA Cassini spacecraft on 25 December 2004, after having been attached for a 7-year interplanetary journey and three orbits around Saturn. The probe reached the predefined NASA/ESA interface point on 14 January 2005 at 09:05:52.523 (UTC). It performed a successful entry and descent sequence and softly landed on Titan’s surface on the same day at 11:38:10.77 (UTC) with a speed of about 4.54 m/s. Since the publication of the official project entry and descent trajectory reconstruction effort by the Descent Trajectory Working Group in 2007 (referred to as DTWG#4) various other efforts have been performed and published. This paper presents an overview of the most relevant reconstructions and compares their methodologies and results. Furthermore, the results of a new reconstruction effort (DTWG#5) are presented, which is based on the same methodology as DTWG#4 but takes into account new estimates of Titan’s pole coordinates which were derived from radar images of different Cassini Titan flybys. It can be shown that the primary effect can be observed in the meridional direction which is represented by a stark southward shift of the trajectory by about 0.3 deg. A much smaller effect is seen in the zonal direction (i.e., less than 0.01 deg in the west to east direction). The revised probe landing coordinates are 192.335 deg W and 10.573 deg S. A comparison of these coordinates with results of recent landing site investigations using visual and radar images of the Cassini VIMS instrument shows excellent agreement of the two independently derived landing coordinates, i.e., longitude and latitude residuals of respectively 0.035 deg and 0.007 deg.  相似文献   

9.
A better understanding of the complex organic chemistry occurring in the methane rich atmosphere of Titan can be achieved via the comparison of observations with results obtained by theoretical models. Available observations are still few but their analysis requires the knowledge of a large set of data, namely frequencies and absolute band intensities. Cross sections are also needed to develop the chemical schemes of photochemical models, in particular the schemes leading to the formation of haze particles visible on Titan. Unfortunately, some of these parameters are not well known, especially if one takes into account the extreme physical conditions of the studied object. This lack of data is particularly enhanced for polyynes because these compounds are highly unstable at the usual pressure and temperature conditions of a laboratory and therefore are very difficult to study. We have developed UV and IR studies, coupling experimental and theoretical approaches, in order to extrapolate the parameters available for short polyynes to longer carbon chains. In the mid-UV range, when the length of the chain increases, the absorption system of polyynes is shifted to longer wavelength and its oscillator strength increases linearly. In the IR range, with the increase of the number of carbon bonds, the positions of the CCC and CCH bending modes shift to lower energy, the latest converging rapidly to a fixed value of 620.5 cm-1 for an infinite length polyyne. Implications for detection and evolution of polyynes in Titan's atmosphere are emphasised.  相似文献   

10.
Winds near the ground on Titan for the Dragonfly landing site (near Selk crater, 10°N) for the mid-2030s (Titan late southern summer, Ls ~ 310°) are estimated for mission design purposes. Prevailing winds due to the global circulation are typically 0.5 m/s, and do not exceed 1 m/s. Local terrain-induced flows such as slope winds appear to be similarly capped at 1 m/s. At various landing sites and times, these two contributions will vectorially combine to yield steady winds (for part of a Titan day, Tsol) of up to 2.0 m/s, but typically less – the slope wind component will be small in the mid-morning. In early afternoon, as on Earth and Mars, solar-driven convection in the planetary boundary layer will cause wind fluctuations of the order of 0.1 m/s, varying with a typical timescale of ~1000 s. Occasionally this convection organizes into coherent ‘dust devil’ vortices: detectable vortices with speeds of 1 m/s are predicted about once per Titan day. We have introduced the convective velocity scale combined with the advection time of PBL cells as a metric to derive the frequency of occurrence of gusts associated with convective vortices (‘dust devils’). Maximum possible vortex winds on Titan of 2.8 m/s may be expected only once per 40 Tsols, and define the maximum wind (4.8 m/s at 10 m height) that Dragonfly must tolerate without damage. The applicability of different wind combinations, scaled to the height of relevant Dragonfly components above the ground (e.g. the maximum corresponds to 3.9 m/s at 1.3 m height) by a logarithmic wind profile, to Dragonfly design and operations are discussed.  相似文献   

11.
We present a concept for a challenging in situ science mission to a primitive, binary near-Earth asteroid. A sub-400-kg spacecraft would use solar electric propulsion to rendezvous with the C-class binary asteroid (175706) 1996 FG3. A campaign of remote observations of both worlds would be followed by landing on the ∼1 km diameter primary to perform in situ measurements. The total available payload mass would be around 34 kg, allowing a wide range of measurement objectives to be addressed. This mission arose during 2004 from the activities of the ad-hoc Small Bodies Group of the DLR-led Planetary Lander Initiative. Although the particular mission scenario proposed here was not studied further per se, the experience was carried over to subsequent European asteroid mission studies, including first LEONARD and now the Marco Polo near-Earth asteroid sample return proposal for ESA’s Cosmic Vision programme. This paper may thus be of interest as much for insight into the life cycle of mission proposals as for the concept itself.  相似文献   

12.
The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charge particles leads to corona discharges which are characterized by low current densities. These electric discharges could induce a number of chemical reactions in the troposphere and hence it is of interest to explore such effects. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene + propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butene, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and an uncharacterized film deposit. We present their trends of formation as a function of discharge time in an ample interval and have derived their initial yields of formation. These results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the observed hydrocarbon species in Titan, the predicted abundance of ethene is to low by a factor of 10 to 40. While some ethene will be produced by charged-particle chemistry, its production by corona processes and subsequent diffusion into the stratosphere appears to be an adequate source. Because little UV penetrates to the lower atmosphere to destroy the molecules formed there, the corona-produced species may be long-lived and contribute significantly to the composition of the lower atmosphere and surface.  相似文献   

13.
This paper describes a microwave limb technique for measuring Doppler wind in the Earth’s mesosphere. The research algorithm has been applied to Aura Microwave Limb Sounder (MLS) 118.75 GHz measurements where the O2 Zeeman lines are resolved by a digital autocorrelation spectrometer. A precision of ∼17 m/s for the line-of-sight (LOS) wind is achieved at 80–92 km, which corresponds to radiometric noise during 1/6 s integration time. The LOS winds from Aura MLS are mostly in the meridional direction at low- and mid-latitudes with vertical resolution of ∼8 km. This microwave Doppler technique has potential to obtain useful winds down to ∼40 km of the Earth’s atmosphere if measurements from other MLS frequencies (near H2O, O3, and CO lines) are used. Initial analyses show that the MLS winds from the 118.75 GHz measurements agree well with the TIDI (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer) winds for the perturbations induced by a strong quasi 2-day wave (QTDW) in January 2005. Time series of MLS winds reveal many interesting climatological and planetary wave features, including the diurnal, semidiurnal tides, and the QTDW. Interactions between the tides and the QTDW are clearly evident, indicating possible large tidal structural changes after the QTDW events dissipate.  相似文献   

14.
Titan's atmosphere contains a mixture of nitrogen, methane, argon, hydrogen, simple hydrocarbons and nitriles, carbon monoxide, and carbon dioxide. Sources of nitrogen may be as a product of the photodissociation of ammonia or trapped in the ices that formed the satellite. Reasons for the abundance of deuterium are examined and its association with nitrogen on Titan is explained.  相似文献   

15.
The surface and atmosphere of Titan constitute a system which is potentially as complex as that of the Earth, with the possibility of precipitation, surface erosion due to liquids, chemistry in large surface or subsurface hydrocarbon reservoirs, surface expressions of internal activity, and occasional major impacts leading to crustal melting. While none of the above have been observed as yet, the composition, density and thermal properties of Titan's atmosphere make it uniquely suited in the outer solar system as a place where such processes may occur. The one attribute of the Earth not expected on Titan is biological activity, which has had a profound effect on the evolution of the Earth's surface-atmosphere system. The earliest environment of Titan could have been warm enough for liquid ammonia-water solutions to exist on or near surface; pre-biotic organic processes may have taken place in such an environment. After a few hundred million years surface ammonia-water would have disappeared. Therefore, study of Titan through the Cassini-Huygens mission, planned for launch in 1997, primarily affords the opportunity to understand planet-wide surface-atmosphere interactions in the presence of fluids but in the absence of life. More speculative is the possibility that endogenic and exogenic heating continue to provide short-lived environments on Titan wherein pre-biotic organic processes in the presence of water happen.  相似文献   

16.
The Accelerometer Experiment (ACC) onboard Mars Global Surveyor (MGS) measured 1600 density profiles in the upper atmosphere of Mars during aerobraking. These measurements reveal large-scale and small-scale structure in the thermosphere of Mars. Here, the measurements of mass density for 115 orbits (#P0670–P0789) from November 1 to 30, 1998, under spring equinox and medium solar activity conditions (average F10.7 ∼ 137) during phase 2 of the aerobraking in the thermosphere of Mars at different altitudes and longitudes are presented for northern mid-latitude (17–42°N) in the dayside atmosphere using ACC onboard MGS. From these mass densities, the neutral densities of different gases are derived from their mixing ratios. Using these neutral densities, the longitudinal distribution of photoionization rates and photoelectron impact ionization rates are calculated at wavelength range 1–102.57 nm due to EUV and soft X-ray radiation under photochemical controlled region using Analytical Yield Spectrum approach (AYS). These conditions are appropriate for MGS Phase 2 aerobraking period from which the accelerometer data is used. Under the photochemical equilibrium condition, the electron density near the peak varies as the square root of the total peak ionization rate. Using this fact, an attempt is being made to estimate the mean primary and secondary peak electron density by averaging the longitudinal variations of total peak ionization rates in the northern mid-latitude (17–42°N) ionosphere of Mars, as there is no radio science measurement at this latitude region by MGS.  相似文献   

17.
In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.  相似文献   

18.
UV induced syntheses of organic compounds from the main atmospheric constituents can be a very important source of organics in a given planetary environment provided the atmosphere is in a reduced state. The evolution of a CO2 rich medium only produces very low yields of formaldehyde and related oxygenated compounds. Considering a CO rich atmosphere, the photochemical yield of O-organics formation is much higher, when the synthesis of N-organics remains difficult. The most favourable atmosphere as far as photochemical organic synthesis is concerned is a CH4 rich milieu.. The photochemical evolution of such a CH4 atmosphere under UV irradiation leads to a chain of various organics, the complexity of which increases together with the number of pathways involved in their formation. Their complexity also closely correlates with their UV photoabsorption spectrum: the more complex they are, the more shifted is their UV spectrum toward the visible range. Direct photodissociation of methane requires UV photon of wavelengths shorter than about 145 nm. It mainly produces ethane which absorbs UV at wavelengths shorter than about 160 nm, and acetylene, that presents an absorption spectrum extending up to 200 nm. This shift still continuously increases with further increase in number of C atoms. Unsaturated hydrocarbons with 4 and more C atoms have UV absorption characteristics including noticeable band structures in the 250–300 nm range. This trend has very important implication in the photochemical behaviour of a CH4-rich planetary atmosphere, as it induces many catalytic processes. The occurrence of such processes is closely related to vertical atmospheric and energy deposition profiles. Titan provides a very good example of such a UV-directed organic atmospheric chemistry.  相似文献   

19.
Comparative pyrolysis mass spectrometric data of Titan aerosol analogues, called "tholins", are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the interpretation of Titan atmosphere data from the Huygens probe in the future.  相似文献   

20.
Recent progress on measurements of isotopic ratios in planetary or satellite atmospheres include measurements of the D/H ratio in the methane of Uranus, Neptune and Titan and in the water of Mars and Venus. Implications of these measurements on our understanding of the formation and evolution of the planets and satellite are discussed. Our current knowledge of the carbon, nitrogen and oxygen isotopic ratios in the atmospheres of these planets, as well as on Jupiter and Saturn, is also reviewed. We finally show what progress can be expected in the very near future due to some new ground-based instrumentation particularly well suited to such studies, and to forthcoming space missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号