首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1–5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of ∼1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth’s exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data.  相似文献   

2.
A model is developed to study the energetic particle populations in Ganymede’s magnetosphere. The main objective is to estimate to what extent the moon could protect an orbiter from radiations. Using Liouville’s theorem, the phase space density of particles coming from Jupiter’s magnetosphere is calculated at any point of Ganymede’s environment. Up to energies of ∼50–100 keV for ions and ∼10–20 MeV for electrons, Ganymede’s magnetic field appears to be able to form distinctive populations as loss-cones over the polar caps and radiation belts. At larger energies, these features are blurred by Larmor radius effects; the moon absorption simply creates a quasi-isotropic layer of ∼500 km thickness where the flux is reduced by ∼40–50%. The predictions are compared to Galileo measurements. In particular, we demonstrate the importance of the moon sweeping in reducing the flux over the polar caps. Interestingly, this can be accounted for by assuming that the particles bouncing between Jupiter and Ganymede are ideally scattered in pitch angle and permanently re-fill the loss-cone, which increases the precipitation on Ganymede’s polar cap. In overall, it is estimated that the radiation dose received by an orbiter of Ganymede will be reduced by more than 50–60% compared to the expected dose at Jupiter/Ganymede distance. This should have a positive impact on the design of a future orbiter of Ganymede.  相似文献   

3.
We present the results of a systematic study of narrow-line Seyfert 1 galaxies (NLS1s) observed with XMM-Newton. The 2–12 keV X-ray spectra of NLS1s are well represented by a single power law with a photon index Γ ∼ 2. When this hard power law continuum is extrapolated into the low energy band, we found that all objects in our sample show prominent soft excess emission. This excess emission is well parameterized by the thermal emission expected from an optically thick accretion disk, and we found the following three peculiar features: (1) The derived disk temperatures are significantly higher than the expectation from a standard Shakura-Sunyaev accretion disk, if we assume a central mass of a black hole to be 106–8M. (2) The temperatures are distributed within narrow range (ΔkT ∼ 0.08 keV) with an average temperature of 0.18 keV in spite of the range of four orders of magnitude in luminosity (1041–45 erg s−1). (3) We found a peculiar temperature–luminosity relation, where the luminosity seems to be almost saturated in spite of the significant change in temperature, during the observations of the most luminous NLS1 PKS 0558-504. These results strongly suggest that the standard accretion disk picture is no longer appropriate in the nuclei of NLS1s. We discuss a possible origin for the soft excess component, and suggest that a slim disk may be able to explain the observational results, if the photon trapping effect is properly taken into account.  相似文献   

4.
Alpha Particle X-ray Spectrometer (APXS) payload configuration for Chandrayaan-2 rover has been completed recently and fabrication of mechanical assembly, PCB layout design and fabrication are in progress. Here we present the design and performance evaluation of various subsystems developed for APXS payload. The low energy threshold of <1 keV and the energy resolution of ∼150 eV at 5.9 keV, for the Silicon Drift Detector (SDD), as measured from the developed APXS electronics is comparable to the standard spectrometers available off-the-shelf. We have also carried out experiments for measuring fluorescent X-ray spectrum from various standard samples from the USGS catalog irradiated by the laboratory X-ray source 241Am with 1 mCi activity. It is shown that intensities of various characteristic X-ray lines are well correlated with the respective elemental concentrations.  相似文献   

5.
Europa planetary protection for Juno Jupiter Orbiter   总被引:1,自引:0,他引:1  
NASA’s Juno mission launched in 2011 and will explore Jupiter and its near environment starting in 2016. Planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design. In particular Juno’s polar orbit, which enables scientific investigations of parts of Jupiter’s environment never before visited, also greatly assist avoiding close flybys of Europa and the other Galilean satellites.  相似文献   

6.
The High Energy X-ray spectrometer (HEX) on Chandrayaan-1 was designed to study the photon emission in the range of 30–270 keV from naturally occurring radioactive decay of 238U and 232Th series nuclides from the lunar surface. The primary objective of HEX was to study the transport of volatiles on the lunar surface using radon as a tracer and mapping the 46.5 keV line from 210Pb, a decay product of 222Rn. HEX was tested for two days during the commissioning phase of Chandrayaan-1 and performance of all sub systems was found to be as expected. HEX started collecting science data during the first non-prime imaging season (February–April, 2009) of Chandrayaan-1. Certain anomalies persisted in this data set and the early curtailment of Chandrayaan-1 mission in August, 2009, did not allow any further operation of HEX. Despite these issues, HEX provided the first data set for 30–270 keV continuum emission, averaged over a significant portion of the lunar surface, including the polar region.  相似文献   

7.
The remote X-ray fluorescence spectroscopy is a powerful technique to investigate the elemental abundances in the atmosphere-less planetary bodies. The experiment involves measuring spectra of fluorescent X-rays from lunar surface using a low energy X-ray detector onboard an orbiting satellite. Since the flux of fluorescent X-ray lines critically depend on the flux and spectrum of the incident solar X-rays, it is essential to have simultaneous and accurate measurement of X-ray from both Moon and Sun. In the context of Moon, this technique has been employed since early days of space exploration to determine elemental composition of lunar surface. However, so far it has not been possible to exploit it to its full potential due to various reasons. Therefore it is planned to continue the remote X-ray fluorescence spectroscopy experiment on-board Chandrayaan-2 which includes both lunar X-ray observations and solar X-ray observations as two separate payloads. The lunar X-ray observations will be carried out by Chandra Large Area Soft x-ray Spectrometer (CLASS) experiment; whereas the solar X-ray observations will be carried out by a separate payload, Solar X-ray Monitor (XSM). Here we present the overall design of the XSM instrument, the present development status as well as preliminary results of the laboratory model testing. XSM instrument will have two packages namely – XSM sensor package and XSM electronics package. XSM will accurately measure spectrum of Solar X-rays in the energy range of 1–15 keV with energy resolution ∼200 eV @ 5.9 keV. This will be achieved by using state-of-the-art Silicon Drift Detector (SDD), which has a unique capability of maintaining high energy resolution at very high incident count rate expected from Solar X-rays. XSM onboard Chandrayaan-2 will be the first experiment to use such detector for Solar X-ray monitoring.  相似文献   

8.
A differential emission measure technique is used to determine flare spectra using solar observations from the soft X-ray instruments aboard the Thermosphere Ionosphere Mesosphere Energetics Dynamics and Solar Radiation and Climate Experiment satellites. We examine the effect of the solar flare soft X-ray energy input on the nitric oxide (NO) density in the lower thermosphere. The retrieved spectrum of the 28 October 2003 X18 flare is input to a photochemical thermospheric NO model to calculate the predicted flare NO enhancements. Model results are compared to Student Nitric Oxide Explorer Ultraviolet Spectrometer observations of this flare. We present results of this comparison and show that the model and data are in agreement. In addition, the NO density enhancements due to several flares are studied. We present results that show large solar flares can deposit the same amount of 0.1–2 and 0.1–7 nm energy to the thermosphere during a relatively short time as the Sun normally deposits in one day. The NO column density nearly doubles when the daily integrated energy above 5 J m−2 is doubled.  相似文献   

9.
We observed sodium emission from Mercury’s atmosphere using a Fabry–Perot Interferometer at Haleakala Observatory on June 14, 2006. The Fabry–Perot Interferometer was used as a wavelength-tunable filter. The spectra of the surface reflection were subtracted from the observed spectra because sodium emission is contaminated by the surface reflection of Mercury. The image obtained in our observation shows the sodium exosphere extended to the anti-solar direction. The lifetime of a sodium atom was estimated to be 1.6 × 104 to 1.9 × 105 s with an error by a factor of 3–4.  相似文献   

10.
The potential effect of the lunar exosphere on the near-ultraviolet sky background emission is predicted for Lunar-based Ultraviolet Telescope (LUT: a funded Chinese scientific payload for the Chang’e-III mission). Using the upper limit on the OH concentration inferred from the recent MIP CHACE results, our calculations show that the sky brightness due to the illuminated exosphere is <8.7 photons−1 cm−2 arcsec−2 within the wavelength range 245–340 nm. By evaluating the signal-to-noise ratios of observations of an AB = 13 mag point source at a series of sky background levels, our analysis indicates that the detection performance of LUT can be moderately degraded by the lunar exosphere emission in most cases. An AB = 13 mag point source can still be detected by the telescope at a signal-to-noise ratio more than 8 when the OH concentration is less than 2 × 108 molecules cm−3. However, the effect on the performance is considerable when the exosphere is as dense as suggested by CHACE.  相似文献   

11.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

12.
We describe the scientific case for and preliminary design of an instrument whose primary goal is to determine the chemistry (element abundance) and mineralogy (compound identity and abundance) of Titan’s surface using a combination of energy dispersive X-ray fluorescence spectroscopy (EDXRF) and X-ray diffraction (XRD). XRD is capable of identifying any crystalline substance present on Titan’s surface at relative abundances greater than ∼1 wt%, allowing unambiguous identification of, for example, structure I and II clathrates (even in the presence of ice), and various organic solids, which may include C2H2, C2H4, C4H2, HCN, CH3CN, HC3N, and C4N2). The XRF component of the instrument will obtain elemental abundances for 16 < Z < 60 with minimum detection limits better than 10 ppm (including detection of atmospheric noble gas isotopes), and may achieve detection limits of 0.01–1% for lighter elements down to Z = 6 (carbon). The instrument is well suited to integration with other analytical tools as part of a light-weight surface chemistry and mineralogy package. Although considerably less sensitive to elemental abundance than GC–MS (10−2 vs. 10−8) it is likely to be significantly lighter (<0.5 kg vs. 10 kg).  相似文献   

13.
The results of proton energy (tens keV – several MeV) spectrum measurements near geomagnetic equator (L < 1.15) at low altitudes (<1000 km) are presented. We used data of experiments onboard ACTIVE, SAMPEX, NOAA TIROS-N satellites and SPRUT-VI (MIR station) and cover a time range of about 30 years (including previous measurements). It was found that the kappa-distribution function fits the experimental spectrum with the best correlation coefficient. A comparison of energy spectra of near-equatorial protons and ring-current protons was made. Using the estimation of the life time of near-equatorial protons we explain the difference in spectral indices of radiation belt and near-equatorial proton formation. We conclude that the ring current is the main source of the near-equatorial protons.  相似文献   

14.
An M7.6 flare was well observed on October 24, 2003 in active region 10486 by a few instruments and satellites, including GOES, TRACE, SOHO, RHESSI and NoRH. Multi-wavelength study shows that this flare underwent two episodes. During the first episode, only a looptop source of <40 keV was observed in reconstructed RHESSI images, which showed shrinkage with a velocity of 12–14 km s−1 in a period of about 12 min. During the second process, in addition to the looptop source, two footpoint sources were observed in energy channel of as high as ∼200 keV. One of them showed fast propagation along one of the two TRACE 1600 Å flare ribbons and the 195 Å loop footpoints, which could be explained by successive magnetic reconnection. The associated CME showed a mass pickup process with decreasing center-of-mass velocity. The decrease of the CME kinetic energy and the increase of its potential energy lead to an almost constant total energy during the CME propagation. Our results reveal that the flare and its associated CME have comparable energy content, and the flare is of non-thermal property.  相似文献   

15.
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS.  相似文献   

16.
Jupiter’s icy moon Europa is one of most promising places in our Solar System where possible extraterrestrial life forms could exist either in the past or even presently. The Europa Lander mission, an exciting part of the international Europa Jupiter System Mission (EJSM/Laplace), considers in situ planetary exploration of the moon. The distance of Europa from the Earth and the Sun asks for autonomous analytical tools that maximize the scientific return at minimal resources, demanding new experimental concepts. We propose a novel instrument, based on the atomic spectroscopy of laser generated plasmas for the elemental analysis of Europa’s surface materials as far as it is in reach of the lander for example by a robotic arm or a mole, or just onboard the lander. The technique of laser-induced plasma spectrometry provides quantitative elemental analysis of all major and many trace elements. It is a fast technique, i.e. an analysis can be performed in a few seconds, which can be applied to many different types of material such as ice, dust or rocks and it does not require any sample preparation. The sensitivity is in the range of tens of ppm and high lateral resolution, down to 50 μm, is feasible. In addition, it provides the potential of depth profiling, up to 2 mm in rock material and up to a few cm in more transparent icy matrices. Key components of the instrument are presently developed in Germany for planetary in situ missions. This development program is accompanied by an in-depth methodical investigation of this technique under planetary environmental conditions.  相似文献   

17.
The solar flare of January 20, 2005 (X7.1, 06:36–07:26 UT, maximum at 07:01 UT by the GOES soft X-ray data) was the most powerful one in January 2005 series. The AVS-F apparatus onboard CORONAS-F registered γ-emission during soft X-ray rising phase of this flare in two energy ranges of 0.1–20 MeV and 2–140 MeV. The highest γ-ray energy registered during this flare was ∼140 MeV. Six spectral features were registered in energy spectrum of this solar flare: annihilation + αα (0.4–0.6 MeV), 24Mg + 20Ne + 28Si + neutron capture (1.7–2.3 MeV), 21Ne + 22Ne + 16O + 12С (3.2–5.0 MeV), 16O (5.3–6.9 MeV), one from neutral pions decay (25–110 MeV) and one in energy band 15–21 MeV. Four of them contain typical for solar flares lines – annihilation, nuclear de-excitation and neutron capture at 1H. Spectral feature caused by neutral pions decay was registered during several flares too. Some spectral peculiarities in the region of 15–21 MeV were first observed in solar flare energy spectrum.  相似文献   

18.
We analyzed data from four different instruments (HI-SCALE, URAP, SWOOPS, VHM/FGM) onboard Ulysses spacecraft (s/c) and we searched for possible evidence of Jovian emissions when the s/c approached Jupiter during the times of Halloween events (closest time approach/position to Jupiter: February 5, 2004/R = 1683 RJ,θ = ∼49°). In particular, we analyzed extensively the low energy ion measurements obtained by the HI-SCALE experiment in order to examine whether low energy ion/electron emissions show a symmetry, and whether they are observed at north high latitudes upstream from the jovian bow shock, as is known to occur in the region upstream from the south bow shock as well ( Marhavilas et al., 2001). We studied the period from October 2003 to March 2004, as Ulysses moved at distances 0.8–1.2 AU from the planet at north Jovicentric latitudes <75°, and we present here an example of characteristic Jovian periodicities in the measurements around a CIR observed by Ulysses on days ∼348–349/2003 (R = 1894 RJ,θ = 72°). We show that Ulysses observed low energy ion (∼0.055–4.7 MeV) and electron (>∼40 keV) flux and/or spectral modulation with the Jupiter rotation period (∼10 h) as well as variations with the same period in solar wind parameters, radio and magnetic field directional data. In addition, characteristic strong ∼40 min periodic variations were found superimposed on the ∼10 h ion spectral modulation. Both the ∼10 h and ∼40 min ion periodicities in HI-SCALE measurements were present in several cases during the whole period examined (October 2003 to March 2004) and were found to be more evident during some special conditions, for instance during enhanced fluxes around the start (forward shock) and the end (reverse shock) of CIRs. We infer that the Jovian magnetosphere was triggered by the impact of the CIRs, after the Halloween events, and it was (a) a principal source of forward and reverse shock-associated ion flux structures and (b) the cause of generation of ∼10 h quasi-periodic magnetic field and plasma modulation observed by Ulysses at those times.  相似文献   

19.
Satellite Laser Ranging (SLR) is a powerful technique able to measure spin rate and spin axis orientation of the fully passive, geodetic satellites. This work presents results of the spin determination of LARES – a new satellite for testing General Relativity. 529 SLR passes measured between February 17 and June 9, 2012, were spectrally analyzed. Our results indicate that the initial spin frequency of LARES is f0 = 86.906 mHz (RMS = 0.539 mHz). A new method for spin axis determination, developed for this analysis, gives orientation of the axis at RA = 12h22m48s (RMS = 49m), Dec = −70.4° (RMS = 5.2°) (J2000.0 celestial reference frame), and the clockwise (CW) spin direction. The half-life period of the satellite’s spin is 214.924 days and indicates fast slowing down of the spacecraft.  相似文献   

20.
With 4 GPS receivers located in the equatorial anomaly region in southeast China, this paper proposes a grid-based algorithm to determine the GPS satellites and receivers biases, and at the same time to derive the total electron content (TEC) with time resolution of 15 min and spatial resolution of 1° by 3.5° in latitude and longitude. By assuming that the TEC is identical at any point within a given grid block and the biases do not vary within a day, the algorithm arranges unknown biases and TECs with slant path TEC from the 4 receivers’ observations into a set of equations. Then the instrumental biases and the TECs are determined by using the least squares fitting technique. The performance of the method is examined by applying it to the GPS receiver chain observations selected from 16 geomagnetically quiet days in four seasons of 2006. It is found that the fitting agrees with the data very well, with goodness of fit ranging from 0.452 TECU to 1.914 TECU. Having a mean of 0.9 ns, the standard deviations for most of the GPS satellite biases are less than 1.0 ns for the 16 days. The GPS receiver biases are more stable than that of the GPS satellites. The standard deviation in the 4 receiver bias is from 0.370 ns to 0.855 ns, with a mean of 0.5 ns. Moreover, the instrumental biases are highly correlated with those derived from CODE and JPL with independent methods. The typical precision of the derived TEC is 5 TECU by a conservative estimation. These results indicate that the proposed algorithm is valid and qualified for small scale GPS network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号