首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently there exist two commonly used measurement fusion methods for Kalman-filter-based multisensor data fusion. The first (Method I) simply merges the multisensor data through the observation vector of the Kalman filter, whereas the second (Method II) combines the multisensor data based on a minimum-mean-square-error criterion. This paper, based on an analysis of the fused state estimate covariances of the two measurement fusion methods, shows that the two measurement fusion methods are functionally equivalent if the sensors used for data fusion, with different and independent noise characteristics, have identical measurement matrices. Also presented are simulation results on state estimation using the two measurement fusion methods, followed by the analysis of the computational advantages of each method  相似文献   

2.
We present the development of a multisensor fusion algorithm using multidimensional data association for multitarget tracking. The work is motivated by a large scale surveillance problem, where observations from multiple asynchronous sensors with time-varying sampling intervals (electronically scanned array (ESA) radars) are used for centralized fusion. The combination of multisensor fusion with multidimensional assignment is done so as to maximize the “time-depth” in addition to “sensor-width” for the number S of lists handled by the assignment algorithm. The standard procedure, which associates measurements from the most recently arrived S-1 frames to established tracks, can have, in the case of S sensors, a time-depth of zero. A new technique, which guarantees maximum effectiveness for an S-dimensional data association (S⩾3), i.e., maximum time-depth (S-1) for each sensor without sacrificing the fusion across sensors, is presented. Using a sliding window technique (of length S), the estimates are updated after each frame of measurements. The algorithm provides a systematic approach to automatic track formation, maintenance, and termination for multitarget tracking using multisensor fusion with multidimensional assignment for data association. Estimation results are presented for simulated data for a large scale air-to-ground target tracking problem  相似文献   

3.
Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that different kinds of sensors are with the same sampling rate, and they are used for state estimation by the KF simultaneously. However, it is hard to achieve state estimation using various kinds of sensor measurements at the same sampling rate due to a complex network and physical characteristic differences between sensors, especially in an advanced multisensor architecture. For this purpose, a multi-rate sensor fusion using the information filtering approach is proposed based on the square-root cubature rule, which is called Multi-rate Squareroot Cubature Information Filter(MSCIF) to track engine performance degradation. Soft measurement synchronization of the MSCIF is designed to provide a sensor fusion condition for multiple sampling rates of measurement, and a fault sensor is isolated by maximum likelihood validation before state estimation. The contribution of this paper is to supply a novel multi-rate informationfilter approach for sensor fault tolerant health estimation of an aero-engine in a multi-sensor system. Tests are conducted for aero-engine performance degradation estimation with multiple sampling rates of sensor measurement on both digital simulation and semi-physical experiment.Experimental results illustrate the superiority of the proposed algorithm in terms of degradation estimation accuracy and robustness to sensor failure in a multi-sensor system.  相似文献   

4.
The estimation of the sensor measurement biases in a multisensor system is vital for the sensor data fusion. A solution is provided for the estimation of dynamically varying multiple sensor biases without any knowledge of the dynamic bias model pa- rameters. It is shown that the sensor bias pseudomeasurement can be dynamically obtained via a parity vector. This is accom- plished by multiplying the sensor uncalibrated measurement equations by a projection matrix so that the measured variable is eliminated from the equations. Once the state equations of the dynamically varying sensor biases are modeled by a polynomial prediction filter, the dynamically varying multisensor biases can be obtained by Kalman filter. Simulation results validate that the proposed method can estimate the constant biases and dynamic biases of multisensors and outperforms the methods reported in literature.  相似文献   

5.
In a multisensor environment, each sensor detects multiple targets and creates corresponding tracks. Fusion of tracks from these, possibly dissimilar, sensors yields more accurate kinematic and attribute information regarding the target. Two methodologies have been employed for such purpose, which are: measurement fusion and state vector fusion. It is well known that the measurement fusion approach is optimal but computationally inefficient and the state vector fusion algorithms are more efficient but suboptimal, in general. This is so because the state vector estimates to be fused obtained from two sensors, are not conditionally independent in general due to the common process noise from the target being tracked. It is to be noted that there are three approaches to state vector fusion, which are: weighted covariance, information matrix, and pseudomeasurement. This research is restricted solely to performance evaluation of the information matrix form of state vector fusion. Closed-form analytical solution of steady state fused covariance has been derived as a measure of performance using this approach. Note that the results are derived under the assumptions that the two sensors are synchronized and no misassociation or merged measurement is considered in the study. Results are compared with those using Monte Carlo simulation, which was used in the past to predict fusion system performance by various authors. These results provide additional insight into the mechanism of track fusion and greatly simplify evaluation of fusion performance. In addition, availability of such a solution facilitates the trade-off studies for designing fusion systems under various operating conditions  相似文献   

6.
This note deals with the effect of the common process noise on the fusion (combination) of the state estimates of a target based on measurements obtained by two different sensors. This problem arises in a multisensor environment where each sensor has its information processing (tracking) subsystem. In the case of an ?-? tracking filter the effect of the process noise is that, over a wide range of its variance, the uncertainty area corresponding to the fused estimates is about 70 percent of the single-sensor uncertainty area as opposed to 50 percent obtained if the dependence is ignored.  相似文献   

7.
The sensor management system is a subsys-tem of a multisensor data fusion system,and itspurpose is to satisfy requests of multitarget andscanned space by using the limited sensor resourcesin order to gain optimal measurement values of allspecified characteristics ( detection and captureprobability,emission power of sensor,trackingprecision or target losing probability and so on) .By the optimal principle listed above,sensor re-sources are distributed in science and reason.In aword,itis a key p…  相似文献   

8.
Algorithms in which each sensor is represented in a local coordinate system and the communication networks between sensors have uncertainties are considered. The algorithms are general and can be applied to various integration tasks. The effects of the communication network uncertainties are minimized in the local estimation and central fusion processes. In the centralized multisensor integration, the local measurements and local measurement models are transferred to the central coordinate system and the optimal integration is obtained at the central process. In contrast, the local measurements, together with the previous central estimate transmitted from the communication network, are locally processed in the distributed multisensor integration algorithm. Because the distributed algorithm uses the communication networks twice, more errors are introduced, so that when the uncertainties are large, the centralized algorithm is preferred. Although the algorithms are developed in the three-dimensional coordinate system, with straightforward extension they can be applied to N-dimensional coordinate systems  相似文献   

9.
针对不同类型导航传感器的采样率不同步,提出了一种基于状态方程多尺度变换的组合导航系统信息异步融合算法。首先,建立组合导航系统基于最高采样率下的状态方程;然后,将状态方程分解到不同的尺度上,进而建立基于不同尺度上的多个状态方程及其对应的量测方程;最后,建立基于不同尺度上的全局最优信息融合算法。仿真结果验证了该算法能有较好的实时性和融合精度。  相似文献   

10.
多传感器融合目标跟踪   总被引:26,自引:0,他引:26  
分析了基于成象和雷达两种传感器对目标状态的测量模型及其融合模型。针对两种传感器之间测量信息的不同步问题,给出了一种基于最小二乘法的不同步信息之间的时间配准和融合方法,并设计了跟踪滤波器。  相似文献   

11.
Jointprobabillsticdataassociation(JPDA)isanalgorithmusedinsinglesensormultipletargettrackingsystems.Itemploysthenon-uniqueassignmentof"allneighbor"strategytoadaptforthedensemultitargettrackingenvironments[1].Becauseofitswideapplications,itisnecessarytoextendJPDAintosomemultiplesensortrackingsystems.Suchamultisensorsystem,forexample,canbeformedbycollocatingradarandinfraredsearchandtrack(IRST)whichcantakeadvantagesofboththesensorsbodatafusion.Undertheconditionofthesamesensors,acommonmeasure…  相似文献   

12.
基于MLR的机动平台传感器误差配准算法   总被引:1,自引:0,他引:1  
崔亚奇  熊伟  何友 《航空学报》2012,33(1):118-128
 基于固定平台传感器误差极大似然配准(MLR)算法,针对机动平台存在姿态角系统误差的问题,提出了对机动平台传感器系统误差和目标状态进行批处理离线估计的机动极大似然配准(MLRM)算法.该算法利用所有传感器对目标的量测值,通过把传感器量测向目标状态进行投影、对传感器系统误差和目标状态进行期望最大化迭代以及对目标的状态进行融合估计,最终实现量测、姿态角系统误差和目标状态的有效估计.仿真结果表明,该算法迭代收敛速度快,对系统误差估计精度高,对系统误差可观测性较低的配准环境的适应性强并且对传感器姿态角的相关性不敏感,具有很强的工程实用性.  相似文献   

13.
Fusion of distributed extended forgetting factor RLS state estimators   总被引:1,自引:0,他引:1  
For single-target multisensor systems, two fusion methods are presented for distributed recursive state estimation of dynamic systems without knowledge of noise covariances. The estimator at every local sensor embeds the dynamics and the forgetting factor into the recursive least squares (RLS) method to remedy the lack of knowledge of noise statistics, developed before as the extended forgetting factor recursive least squares (EFRLS) estimator. It is proved that the two fusion methods are equivalent to the centralized EFRLS that uses all measurements from local sensors directly and their good performance is shown by simulation examples.  相似文献   

14.
Performance evaluation for MAP state estimate fusion   总被引:1,自引:0,他引:1  
This paper presents a quantitative performance evaluation method for the maximum a posteriori (MAP) state estimate fusion algorithm. Under ideal conditions where data association is assumed to be perfect, it has been shown that the MAP or best linear unbiased estimate (BLUE) fusion formula provides the best linear minimum mean squared estimate (LMMSE) given local estimates under the linear Gaussian assumption for a static system. However, for a dynamic system where fusion is recursively performed by the fusion center on local estimates generated from local measurements, it is not obvious how the MAP algorithm will perform. In the past, several performance evaluation methods have been proposed for various fusion algorithms, including simple convex combination, cross-covariance combination, information matrix, and MAP fusion. However, not much has been done to quantify the steady state behavior of these fusion methods for a dynamic system. The goal of this work is to present analytical fusion performance results for MAP state estimate fusion without extensive Monte Carlo simulations, using an approach developed for steady state performance evaluation for track fusion. Two different communication strategies are considered: fusion with and without feedback to the sensors. Analytic curves for the steady state performance of the fusion algorithm for various communication patterns are presented under different operating conditions.  相似文献   

15.
针对单一传感器的测量信息难以准确、全面地反映航空发动机转子、轴承和齿轮的工作状况,进而造成振动故障诊断难度大的问题,提出安装多个振动传感器组成传感器网络,建立基于多传感器信息的发动机转子故障决策融合诊断系统。由于多传感器系统不可避免地会存在各传感器信息不一致、信息冲突的情形,因此针对该融合诊断系统的信号测量、信息预处理、特征提取、故障诊断及决策融合5个环节,重点研究了决策融合环节的Dempster-Shafer(D-S)证据决策融合方法存在的冲突证据融合失效问题。通过分析原因,从避免“一票否决”现象和证据加权平均两个方面进行改进,提出了改进D-S证据融合方法,并应用于航空发动机转子的模拟故障决策融合诊断中。结果表明基于D-S证据理论对3个传感器的单一诊断结果进行决策融合,能得到比任一单个传感器更准确、可靠的结果;而改进D-S证据融合方法由于能在一定程度上克服冲突证据融合带来的失效问题,且能同时兼顾处理好非冲突证据的融合,故其对于证据冲突和非冲突情形都取得了较好的融合效果,因此总的分类正确率要高于常规D-S算法和PCR5算法。  相似文献   

16.
在多被动传感器目标跟踪中,融合中心处理的信息一般是同步的,然而实际情况并非如此。另外,一些被动传感器只能得到目标的方位信息,无法单独形成有效航迹,这就需要将各传感器数据同步到相同时刻,然后应用同步融合算法。针对被动传感器探测系统,采用传感器到传感器融合和系统到传感器融合的分布式融合结构,并对各局部传感器引入全局反馈,对相关信息采用协方差交叉算法进行处理,完成被动传感器异步数据的融合,仿真结果表明,该算法具有较好的融合效果。  相似文献   

17.
Multisensor multitarget bias estimation for general asynchronous sensors   总被引:4,自引:0,他引:4  
A novel solution is provided for the bias estimation problem in multiple asynchronous sensors using common targets of opportunity. The decoupling between the target state estimation and the sensor bias estimation is achieved without ignoring or approximating the crosscovariance between the state estimate and the bias estimate. The target data reported by the sensors are usually not time-coincident or synchronous due to the different data rates. Since the bias estimation requires time-coincident target data from different sensors, a novel scheme is used to transform the measurements from the different times of the sensors into pseudomeasurements of the sensor biases with additive noises that are zero-mean, white, and with easily calculated covariances. These results allow bias estimation as well as the evaluation of the Cramer-Rao lower bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases in any scenario. Monte Carlo simulation results show that the new method is statistically efficient, i.e., it meets the CRLB. The use of this technique for scale and sensor location biases in addition to the usual additive biases is also presented.  相似文献   

18.
针对机载探测设备多传感器系统具有多目标,大量观测数据的特点,提出了一种基于Demp-ster-Shafer(D-S)证据理论和主观Bayesian方法组合的数据融合算法。在数据融合过程中,为保证融合的实时性,融合系统采用时域融合和空域融合相结合的方法,首先对相同传感器的各次抽样值进行时域融合,然后传感器之间的融合采用D-S方法进行融合;最后,其融合结果经概率转化后,与来自于ELINT(Electronic Intelligence)的信息通过主观Bayesian方法进行识别级融合。最后给出一个实例,经过仿真计算证明了该算法的可行性和实用性。  相似文献   

19.
Target tracking using multiple sensors can provide better performance than using a single sensor. One approach to multiple target tracking with multiple sensors is to first perform single sensor tracking and then fuse the tracks from the different sensors. Two processing architectures for track fusion are presented: sensor to sensor track fusion, and sensor to system track fusion. Technical issues related to the statistical correlation between track estimation errors are discussed. Approaches for associating the tracks and combining the track state estimates of associated tracks that account for this correlation are described and compared by both theoretical analysis and Monte Carlo simulations  相似文献   

20.
The case of data fusion of sensors dissimilar in their measurement/tracking errors is considered. It is shown that the fused track performance is similar whether the sensor data are fused at the track level or at the measurement level. The case of a cluster of targets, resolved by one sensor but not the other, is also considered. Under certain conditions the fused track may perform worse than the worst of the sensors. A remedy to this problem through modifications of the association algorithm is presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号