首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.  相似文献   

2.
In darkness, protonemata of Pohlia nutans (Hedw.) grew negatively gravitropically (upwards). However, not all filaments became gravitropic immediately after transfer to darkness. Some of them (~20%) for several days grew in different directions with respect to gravity. The apical cells of those protonemata predominantly contained multiple chloroplasts. The intensity of chlorophyll fluorescence rapidly decreased in the apical cells of such protonemata while starch content increased in comparison with upright growing protonemata. Light, especially in the red and blue part of the spectrum, inhibited protonemal gravitropism. Red light induced stronger inhibitory effects than blue light. Red light of 1.0 to 1.5 micromoles m-2 s-1 intensity induced bud differentiation in apical cells on almost all side branches of main protonemal filaments. Bright fluorescence of F-actin bundles in the tip of apical protonematal cells and a delicately fluorescing network enclosing plastids basal to the tip in a sedimentation zone were visualized. Bright fluorescence of actin as local patches and fine prominent axially oriented bundles was observed in cells of gametophore buds.  相似文献   

3.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   

4.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   

5.
In dark-grown plantlets of the moss, Pottia intermedia, negatively gravitropic secondary protonemata differentiate from the superficial cells of leafy shoots. When transferred to the light, distal parts of the protonemata nearest to the apical cells begin to ramify and the apical cells of the side branches as well as of the main protonemal filaments often differentiate as buds. Dark-grown protonemata were oriented horizontally and illuminated from below with white light of different intensities. Only light with an intensity of 4.5 μmol·m−2·s−1 was sufficient to induce: (a) phototropism in the apical cells, (b) light-directed initiation of branch primordia, and (c) directed growth of side branches and bud differentiation. Apical cells illuminated with light of lower (0.03–0.37 μmol·m−2·s−1) intensity grew upwards (i.e., away from the light). It was shown that this upward growth was determined by the action of gravity. Although initiation of branch primordia was only slightly affected, their growth was strongly stimulated on the upper side of the protonemata.  相似文献   

6.
Moss protonemata are a valuable system for studying gravitropism because both sensing and upward curvature (oriented tip growth) take place in the same cell. We review existing evidence, especially for Ceratodon purpureus, that addresses whether the mass that functions in sensing is that of amyloplasts that sediment. Recent experiments show that gravitropism can take place in media that are denser than the apical cell. This indicates that gravity sensing relies on an intracellular mass rather than that of the entire cell and provides further support for the starch-statolith hypothesis of sensing. Possible mechanisms for how amyloplast mass functions in sensing and transduction are discussed.  相似文献   

7.
Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.  相似文献   

8.
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.  相似文献   

9.
The effect of elevated temperatures of 35 and 45 degrees C (at the intensities of photosynthetically active radiation 322, 690 and 1104 micromoles m-2 s-1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat (Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids--alpha-pinene, delta 3 carene, limonene, benzene, alpha- and trans-caryophyllene, alpha- and gamma-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 micromoles m-2 s-1 heat resistance of photosynthesis and respiration increased at 35 degrees C and decreased at 45 degrees C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 micromoles m-2 s-1 and the smallest under 1104 micromoles m-2 s-1 at 35 degrees C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revealed the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature.  相似文献   

10.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

11.
Laboratory Biosphere is a 40-m3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h-1 m-2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 micromoles m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 micromoles m-2 s-1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and dark respiration settled into a range of 12-23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which integrate the simultaneous growth of several crops as in a sustainable remote life support system.  相似文献   

12.
LED光谱对模拟空间培养箱中植物生长发育的影响   总被引:1,自引:0,他引:1  
通过研究在空间植物培养箱中利用LED作为光源对植物生长发育的作用, 并以荧光灯作为对照, 评估LED光源在空间植物培养中的优缺点, 可为中国即将在空间实验室天宫二 号和空间站中开展的高等植物生长实验提供参考. 利用不同比例的红光与白光LED组合光源, 研究光谱组成(红蓝光比例)、光照强度、光周期和气体流通等条件对于模拟空间 植物培养箱中拟南芥和水稻生长发育的影响. 结果表明, 与荧光灯相比, 红蓝光比例高的LED会导致拟南芥提早开花和水稻叶片的早衰. 红蓝光峰值比在3.9左右时, 拟南芥 和水稻生长最为有利; 红蓝光峰值比超过16则明显抑制拟南芥和水稻的生长, 导致叶片早衰. 另外, 在密闭培养箱中, 光强小于150μmol·m-2·s-1时, 增加光照强度可以部分抵消气体流通不足导致拟南芥植物生长的抑制, 而光照强度大 于150μmol·m-2·s-1时, 光强越大拟南芥的生长发育受到抑制越严重. 水稻对密闭培养环境中高光强的耐受性明显好于拟南芥. 因此, 在设计空间植物培养箱的LED光照系统时, 红蓝光的比例选择是关键, 此外还需综合考虑空间微重力条件下气体对流变化影响植物对光的反应.   相似文献   

13.
Moss protonemata exhibit negative gravitropism and the amyloplasts of the apical cell seem to play a key role in protonemal gravisensitivity. However, the mechanisms of this process are still poorly understood. Previously, we have shown that Ceratodon protonemata grown on agar-medium demonstrated greater gravicurvature than protonemata grown on medium with 11 mM glucose. In this study, we have examined whether gibberellic acid (GA), which promotes alpha-amylase expression, influences graviresponse of C. purpureus protonemata (strains WT-4 and WT-U) and how this event interacts with exogenous soluble sugars. After gravistimulation the WT-4 strain curved about twice as fast as the WT-U strain. However, responses of both strains to added substances were similar. High concentration of glucose (0.11 M) caused a decrease in protonema curvature, while the same concentration of sucrose did not significantly change the angles of curvature compared with controls. GA at 0.1 mM and higher concentrations inhibited gravitropism, and caused some apical cells to swell. The possible involvement of the carbohydrates in gravitropism is discussed.  相似文献   

14.
Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol-1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher.  相似文献   

15.
Gravitropically tip-growing cell types are attractive unicellular model systems for investigating the mechanisms and the regulation of gravitropism. Especially useful for studying the mechanisms of positive and negative gravitropic tip-growth are characean rhizoids and protonemata. They originate from the same cell type, show the same overall cell shape, cytoplasmic zonation, arrangement of actin and microtubule cytoskeleton, use statoliths for gravisensing, but show opposite gravitropism. In both cell types, actin microfilaments are complexly organized in the apical dome,where a dense spherical actin array is colocalized with spectrin-like epitopes and a unique endoplasmic reticulum aggregate, the structural center of the Spitzenk?rper. The opposite gravitropic responses seem to be based on differences in the actin-organized anchorage of the Spitzenk?rper and the actin-mediated transport of statoliths. In negatively gravitropic (upward bending) protonemata, the statoliths-induced drastic upward shift of the cell tip is preceded by a relocalization of dihydropyridine-binding calcium channels and of the apical calcium gradient to the upper flank (bending by bulging). Such relocalizations have not been observed in positively gravitropically responding (downward growing) rhizoids in which statoliths sedimentation is followed by differential flank growth (bending by bowing). This paper reviews the current knowledge and hypotheses on the mechanisms of the opposite gravitropic responses in characean rhizoids and protonemata.  相似文献   

16.
Higher plants are likely to play a major role in bioregeneration systems for food, air and water supplies. Plants may also contribute by the removal of toxic organic substances from the air of a closed environment. Dieffenbachia amoena plants were exposed to 0 to 1.2 x 10(6) micrograms toluene m-3 at light intensities of 35 and 90 micromoles m-2 s-1 in sealed chambers. Toluene removal, photosynthesis and respiration were measured. An increased light intensity increased the rate of toluene removal five-fold over the rate at the lower intensity; the kinetics suggest active regulation by the plant. The removal rate saturated at 2700 micrograms toluene h-1 at the lower intensity and failed to saturate at the higher intensity. Toluene exposure inhibited photosynthesis and respiration only transiently and without correlation to toluene concentration. These plants can act as efficient scavengers of toluene in a contaminated environment.  相似文献   

17.
We measured changes in length on the two opposite sides of the red-light-grown oat (Avena sativa L.) coleoptiles subjected to either gravitropic or phototropic stimulation and subsequently rotated on a horizontal clinostat. The length measurement was conducted using three 5 mm-long zones delimited by ink markers from the tip. Curvature of each zone was analyzed from the length difference between the two sides. Gravitropism was induced by displacing the seedling from the vertical by 30 degrees or 90 degrees for 25 min. Phototropism was induced by exposing the coleoptile to unilateral blue light for 30 s, which provided a fluence (1.0 micromoles m-2) optimal for the pulse-induced positive phototropism or a lower, suboptimal fluence (0.03 micromoles m-2). After negatively gravitropic bending, the upper two zones straightened rapidly at either displacement angle. After positively phototropic bending, straightening occurred, but only in the top zone and at the lower fluence. The upper two zones straightened rapidly, however, when bilateral blue light (30 s; 15 micromoles m-2 from either direction) was applied 25 min after unilateral stimulation at the higher fluence. Bilateral blue light alone induced no curvature. These results confirm that the straightening of gravitropically bent coleoptiles is autonomic, and suggest that a similar autonomic response participates in the straightening of phototropically bent coleoptiles. Suppression of elongation on the concave side of the coleoptile mainly accounted for gravitropic and phototropic curvatures. The concave side of the top zone shrank during both tropisms. This shrinkage progressed at a high rate from the beginning of curvature response, suggesting that a drop in turgor pressure is the main and direct cause of the shrinkage.  相似文献   

18.
We are planning a short-term experiment with Superdwarf wheat on the U.S. Space Shuttle and a seed-to-seed experiment on the Russian Space Station Mir. The goals of both experiments are to observe effects of microgravity on developmental steps in the life cycle and to measure photosynthesis, respiration, and transpiration by monitoring gas exchange. This requires somewhat different hardware development for the two experiments. Ground-based research aims to understand plant responses to the environments in the space growth chambers that we will use (after some modification): the Plant Growth Unit (PGU) on the shuttle and units called Svet, Svetoblock 2, or Oasis on Mir. Low irradiance levels (100 to 250 micromoles m-2 s-1 at best) pose a particular problem. Water and nutrient supply are also potentially limiting factors, especially in the long-term experiment. Our ground-based studies emphasize responses to low light levels (50 to 400 micromoles m-2 s-1); results show that all developmental steps are delayed by low light compared with plants at 400 micromoles m-2 s-1. We are also testing various rooting substrates for the shuttle experiment. A 1:1:1 mixture of peat:perlite:vermiculite appears to be the best choice.  相似文献   

19.
The photosynthesis and productivity of Lemna gibba were studied with a view to its use in Controlled Ecological Life Support Systems (CELSS). Photosynthesis of L. gibba floating on the nutrient solution could be driven by light coming from either above or below. Light from below was about 75% as effective as from above when the stand was sparse, but much less so with dense stands. High rates of photosynthesis (ca. 800 nanomoles CO2 g dry weight (DW)-1 s-1) were measured at 750 micromoles m-2 s-1 PPF and 1500 micromoles mol-1 CO2. This was attained at densities up to 660 g fresh weight (FW) m-2 with young cultures. After a few days growth under these conditions, and at higher densities, the rate of photosynthesis dropped to less than 25% of the initial value. This drop was only partly alleviated by thinning the stand or by introducing a short dark period at high temperature (26 degrees C). Despite the drop in the rate of photosynthesis, maximum yields were obtained in batch cultures grown under continuous light, constant temperature and high [CO2]. Plant protein content was less than reported for field grown Lemna. When the plants were harvested daily, maintaining a stand density of 600 g FW m-2, yields of 18 g DW m-2 d-1 were obtained. The total dry weight of L. gibba included 40% soluble material (sugars and amino acids), 15% protein, 5% starch, 5% ash and 35% cellulose and other polymers. We conclude that a CELSS system could be designed around stacked, alternate layers of transparent Lemna trays and lamps. This would allow for 7 tiers per meter height. Based on present data from single layers, the yield of such a system is calculated to be 135 g DW m-3 d-1 of a 100% edible, protein-rich food.  相似文献   

20.
In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号