首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
目前我院发动机使用的全轴摆动喷管摆动装置一般设计成非理想状态,导致摆角控制上由于牵连干扰而存在一定的误差,影响发动机试验中喷管的控制精度。只有通过测量发动机喷管牵连角,对另一个作动器进行牵连角补偿,才能消除发动机喷管牵连干扰。小组运用创新的技术及合理的软硬件设计,建立了发动机喷管非理想状态下牵连角直接测试方法,完成了牵连角测试。  相似文献   

2.
采用数值方法求解超音速分离线(SSSL)喷管内流场,研究了不同摆角对喷管流场分布的影响,对比分析超音速分离线与亚音速分离线喷管的轴向推力、径向推力及偏转放大因子随喷管摆角的变化规律,为超音速分离线喷管的设计研究提供理论参考。计算结果表明,摆动对超音速分离线喷管内流场影响显著,随着摆角的增大,内流场的非对称性和激波强度均增加;在相同摆管的轴向力分力略有减小,而径向分力则呈现增大的趋势;超音速分离线喷管与亚音速分离线喷管的径向分力比值,即偏转放大因子则随喷管摆角呈先增大、后减小的变化规律,本算例中的最佳放大因子1.36,对应的喷管摆角为2.5°;另外,随着摆角增大,超音速分离线喷管内流场Al2O3粒子分布的非对称特性也逐渐加强,活动体小端局部范围粒子浓度显著增大。  相似文献   

3.
摆动喷管具有大惯量和强非线性特征,存在与惯性器件耦合的风险。建立了从指令输入到惯性器件响应输出的控制回路开环传递特性模型,用有限元方法模拟了摆动喷管非线性特征,发现了摆动喷管与惯性器件的超谐波共振耦合效应,同时讨论了几种改进措施的有效性和可行性,发现对作动器反馈信号进行幅值调制来降低耦合效应效果明显且易于应用实现。  相似文献   

4.
柔性接头频率特性的计算方法研究   总被引:1,自引:0,他引:1  
为防止作动器驱动力矩载荷频率与柔性接头固有频率的共振,需确定柔性接头的频率特征。本文给出了柔性接头频率特征的计算公式,包括对固有频率,共振频率,稳态摆幅,共振摆幅以及摆动角速度和角加速度的分析,给出了设计算例,供柔性接头设计时参考。  相似文献   

5.
超音速分离线喷管作为一种新型可动喷管,在机械结构、流场分布、推力性能等方面具有不同于传统可动喷管的特点。由于具有偏转放大效应特点,在执行矢量控制时超音速分离线喷管性能较明显优于传统喷管。为了讨论其推力效率受不同因素影响的变化规律及作用机理,对不同摆角下超音速分离线喷管受不同因素影响的内流场开展数值仿真研究。结果表明:在给定的设计参数下,分离线间隙尺寸的增大对推力效率具有减益性,超音速分离线喷管在执行矢量控制时具有较高的推力效率;同时,相较于锥形扩张段,钟形扩张段喷管有着更好的推力效率。  相似文献   

6.
针对新型战术导弹对摆动喷管伺服系统提出的小型化大功率要求,提出了一种基于电动伺服系统的单喷管双摆驱动装置。该装置使用2个相互垂直的直线式电动伺服机构共同推动喷管进行摆动,采用无刷直流电机和滚珠丝杠减速器的结构形式,实现了系统的高功率密度和高效率,可提供大输出力矩,并具有良好控制精度。通过对该系统进行运动分析与建模,研究了2个直线式电动伺服机构的运动非线性特性及相互间交连耦合干扰,分析了两者的成因、随摆角分布规律及其对喷管摆动角位置精度的影响,给出了任意摆角下的双通道指令计算方法,据此采用双通道协同工作的方式精确控制喷管摆动方向和摆动角度。  相似文献   

7.
潜入式摆动喷管两相内流场数值模拟   总被引:7,自引:0,他引:7  
气相采用三维薄层近似N-S方程,固相采用拉格朗日坐标系下颗粒轨道模型,计算方法采用显式ENO差分格式和分区多块网格技术,建立了固体火箭发动机内流场模拟软件。对轴对称JPL喷管进行模拟,计算结果与文献进行比较,符合较好。推广到实际三维装药型面时,发现颗粒数目增加导致计算效率降低。采用软件中的气相计算模块对潜入式摆动喷管内流场进行数值模拟,比较了喷管摆动角在发动机喉道附近引起流动变化,研究了非对称流动对喷管内表面压强的影响。  相似文献   

8.
发动机喷管外露于火箭尾部是常见情形,但在火箭气动设计过程中却经常不予考虑。利用数值计算方法,研究喷管外露部分对火箭气动静稳定及控制特性的影响。计算结果表明:在超声速Ma=2~12、攻角30°范围内,外露喷管对火箭气动静稳定性有1%~2%的增加,且气动控制效率明显,喷管±3°摆角产生的气动控制力矩约为头部空气舵±20°摆角的1~2倍。因此,对于确实存在喷管外露的火箭,在气动特性设计过程中需充分考虑喷管对静稳定性的影响,甚至可以考虑将喷管作为气动控制面,用于火箭无动力滑行段的姿态控制。  相似文献   

9.
球窝喷管接触应力及摆动力矩计算   总被引:1,自引:0,他引:1  
用有限元法对球窝喷管阳球体、承力球窝法兰进行了应力-应变分析,采用间隙元计算了球窝喷管阴阳球体间的接触应力,求出了其分界面法线方向的压力;在此基础上,推导了球窝喷管摆动摩擦力矩的计算公式,计算了球窝喷管的摆动力矩。  相似文献   

10.
本文对柔性喷管全轴向摆动中存在的铰链力及其扭矩进行了分析,通过冷试试验作了测量与计算,并在计算机上进行了各种情况下摆动的模拟计算。计算的结果与分析的结论是一致的。对于其他使用液压作动筒伺服系统驱动的可动喷管(如珠承喷管)也是适用的。 本文还引用了四元数运算法进行扭矩的计算,它与惯用的欧拉变换或克雷可夫变换相比,来得简捷、有效。通过两种方法计算比较,表明这一尝试是成功的。  相似文献   

11.
喷管收敛段与喉部型面对喷管流量的影响   总被引:4,自引:0,他引:4  
用Fluent计算流体力学软件对固体火箭发动机喷管流场进行了数值计算,研究了喷管收敛半角,喷管喉部上游圆弧曲率半径长喉部圆柱段长度对喷管流场的影响,研究结果表明,喷管喉部圆柱段长度对流量影响不大,喷管流量随喷管收敛半角的增大而减小,喷管流量随喷管喉部上游圆弧半径的增大而增大。所提供的结论可供喷管设计人员参考。  相似文献   

12.
为了分析瓦状塞式喷管的气动特性,提出轴对称内喷管和塞锥的型面设计方法,设计了两单元的模型发动机,内喷管面积比为5.81,总面积比为24.36、29.43、33.88、37.58。采用高压空气为介质对模型发动机进行冷流试验,分析内喷管倾角和底部二次流变化、以及有无底部盖板对推力性能和底部压强的影响情况。介绍了试验发动机的结构与设计参数,给出了试验模型照片、测量参数曲线和性能数据处理。结果表明:瓦状塞式喷管模型的高度补偿效果较为明显,在整个工作高度有较高的推力系数效率,20°模型的最高效率为96%;底部压强曲线反映出了底部气动特性由开放状态到闭合的转变过程;内喷管倾角增大,底部压强增大即增加底部推力,但存在一个优化性能的最佳倾角;底部加入二次流可以增加底部压强,提高性能,但其影响范围在1%~2%,少量的二次流对增加性能的效果较好;底部盖板会影响底部的气动特性,底部压强是否受环境压强的影响取决于底部处于开放或闭合状态。  相似文献   

13.
塞式喷管单元发动机实验与数值模拟研究   总被引:2,自引:0,他引:2  
简要介绍固体推进剂模拟塞式喷管单元发动机实验系统,给出了实验塞式喷管型面设计方法和特征线法在塞式喷管流场计算中的应用,癖结了实验研究结果,并同数值模拟计算结果进行了比较,主要结果包括燃烧室压力,底部气锥流量,内膨胀比,侧喷管倾角,底部压缩角等对塞式喷管性能的影响,并得出了塞式喷管单元发动机推力方向与其轴线方向夹角的高度特性。  相似文献   

14.
针对环喉环簇塞式喷管发动机的结构特点,提出了二次流喷射实现推力矢量控制的方案,并用数值方法研究了二次流的总温、总压、位置、角度、流量、喷射孔的数量以及孔间距等工作参数对推力矢量控制性能的影响。结果表明,侧向力与二次流的总温、总压、流量成正比关系;多孔比单孔的喷射效果好,孔与孔的间距要适当;逆向喷射比顺向喷射产生的侧向力大;喷射孔位置的选取受工作压比的影响很大。  相似文献   

15.
二次抛物线型面喷管参数的优化选择   总被引:1,自引:0,他引:1  
二次抛物线型面是火箭发动机喷管较常用的一种型面,对其参数进行优化选择是必要的,在喷管型面长度和出口扩张半角确定的条件下,优化方法是把比冲作为目标函数,利用一维等熵流的气动力公式,二次抛物线型面的几何关系和计算机求极大值方法,确定达到比冲最佳值的设计变量一喷管初扩张角和出口马赫数。  相似文献   

16.
为研究气动扇形喷嘴雾化特性,设计加工了不同角度、不同出口形式和不同尺寸的5种扇形喷嘴,并搭建了试验台架系统,进行了喷嘴雾化试验。根据试验测量结果,从流量特性和雾化特性方面分析了气液比、喷嘴结构等对喷嘴流量系数、喷雾场雾化粒径分布的影响,并定性给出了喷嘴结构对雾化特性的影响规律。  相似文献   

17.
非轴对称斜切喷管内流场数值模拟   总被引:1,自引:0,他引:1  
应用有限体积法建立了三维守恒型N-S方程组的数值求解器,对某非轴对称斜切喷管内流场开展了数值模拟计算,研究了斜切角度变化时引起的发动机推力及推力线偏转角变化。研究结果表明,在相同总压、总温条件下,喷管质量流量及发动机推力随斜切角增大而呈线性趋势减小,推力线偏转角在斜切角为0°时最大。  相似文献   

18.
介绍了喷管可延伸出口锥对大型固体火箭发动机推力向量控制系统稳定性的影响,并提出了改善其系统稳定性的措施。  相似文献   

19.
YES2 (launching 2007) aims to demonstrate a tether-assisted re-entry concept, whereby payload will be returned to Earth using momentum provided from a swinging tether. Deployment takes place in two phases: (1) deployment of 3.5 km of tether to the local vertical and hold, and (2) deployment to 30 km for a swinging cut. Optimal trajectories are determined for both phases after comparing the effect of different cost functions on the deployment dynamics. Closed-loop control is provided by linearizing the dynamics around the optimal trajectories and solving a receding horizon control problem for a set of linear feedback gains. The controllers are tested in a flexible tether model with large disturbances to the hardware model and environmental variables. Closed-loop simulations show that the system can be controlled quite well using only feedback of length and length rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号