首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Long-term balloon observations have been performed by the Lebedev Physical Institute since 1957 up to the present time. The observations are taken several times a week at the polar and mid latitudes and allow us to study dynamics of galactic and solar cosmic ray as well as secondary particle fluxes in the atmosphere and in the near-Earth space. Solar energetic particles (120) – mostly protons – (SEP) events with >100 MeV proton intensity above 1 cm−2 s−1 s−1 were recorded during 1958–2006. Before the advent of the SEP monitoring on spacecraft these results constituted the only homogeneous series of >100 MeV SEP events. The SEP intensities and energy spectra inferred from the Lebedev Physical Institute observations are consistent with the results taken in the adjacent energy intervals by the spacecraft and neutron monitors. Joint consideration of the SEP events series recorded by balloons and by neutron monitors during solar cycles 20–23 makes it possible to restore the probable number of events in solar cycle 19, which was not properly covered by observations. Some correlation was found between duration of SEP event production in a solar cycle and sunspot cycle characteristics.  相似文献   

2.
Data from geostationary operational environmental satellite (GOES) series were used to identify intense solar energetic particle (SEP) events occurred during the solar activity cycle no. 23. We retrieved O3, NO, NO2, HNO3, OH, HCl and OHCl profiles coming from different satellite sensors (solar occultation and limb emission) and we looked for the mesospheric/stratospheric response to SEPs at high terrestrial latitudes. The chemistry of the minor atmospheric components is analysed to evaluate the associated odd nitrogen (NOx) and odd hydrogen (HOx) production, able to cause short (h) and medium (days) term ozone variations. We investigated the effects of SEPs on the polar atmosphere in three different seasons, i.e., January 2005, April 2002 and July 2000. The inter-hemispheric variability of the ozone, induced by the SEP series of January 2005, has been compared with the effects connected both to larger and quite similar events. We found that during SEP events: (i) solar illumination is the key factor driving SEP-induced effects on the chemistry of the polar atmosphere; (ii) even events with limited particle flux in the range 15–40 MeV are able to change the abundance of the minor constituents in the mesosphere and upper stratosphere.  相似文献   

3.
Fifteen solar energetic particle (SEP) events have been analyzed using proton flux data recorded by the Helios 1, Helios 2, and IMP 8 spacecraft in the energy range ∼4–40 MeV during 1974–1982. For each of the events at least two of the spacecraft have their nominal magnetic footpoint within 20° in heliocentric longitude from each other. The SEP events are sub-grouped as a function of their heliocentric longitudinal separation and heliocentric radial distance from the SEP associated solar flare and several case studies are presented in this paper. Main results concerning their usage in estimating the SEP radial dependence are given. Moreover, we investigate the behavior of the third not connected spacecraft in order to study the dependence of the proton flux as a function of flare location. It is found that the contribution of the longitudinal gradient in determining variations in the SEP proton flux is particularly relevant for spacecraft having their magnetic connection footpoint separated from the flare between 30° and 50°.  相似文献   

4.
We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010–2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity?≤?1?pfu), minor (1?pfu?<?proton intensity?<?10?pfu) and major (proton intensity?≥?10?pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.  相似文献   

5.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

6.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

7.
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes.  相似文献   

8.
We present and discuss here the first version of a data base of extreme solar and heliospheric events. The data base contains now 87 extreme events mostly since 1940. An event is classified as extreme if one of the three critical parameters passed a lower limit. The critical parameters were the X-ray flux (parameter R), solar proton flux (parameter S) and geomagnetic disturbance level (parameter G). We find that the five strongest extreme events based on four variables (X-rays SEP, Dst, Ap) are completely separate except for the October 2003 event which is one the five most extreme events according to SEP, Dst and Ap. This underlines the special character of the October 2003 event, making it unique within 35 years. We also find that the events based on R and G are rather separate, indicating that the location of even extreme flares on the solar disk is important for geomagnetic effects. We also find that S = 3 events are not extreme in the same sense as R > 3 and G > 3 events, while S = 5 events are missing so far. This suggests that it might be useful to rescale the classification of SEP fluxes.  相似文献   

9.
It is a case study of a chain of three magnetic storms with a special attention to the particle dynamics based on CORONAS-F and SERVIS-1 low altitude satellite measurements. Solar proton penetration inside the polar cap and inner magnetosphere and dynamics at different phases of the magnetic storms was studied. We found, that solar protons were captured to the inner radiation belt at the recovery phase of the first and the second magnetic storms and additionally accelerated during the last one. No evidence of sudden commencement (SC) particle injection was found. Enhanced solar proton belt intensity with small pitch angles decreased slowly during satellite orbits for 30 days until the next magnetic storm. Then in 20–30 h we registered strong precipitation of these protons followed by the trapped proton flux dropout. Intensity decrease was more pronounced at lower altitudes and higher particle energies.  相似文献   

10.
The main properties of 11622 coronal mass ejections (CMEs) observed by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO-C2) from January 1996 through December 2006 are considered. Moreover, the extended database of solar proton enhancements (SPEs) with proton flux >0.1 pfu at energy >10 MeV measured at the Earth’s orbit is also studied. A comparison of these databases gives new results concerning the sources and acceleration mechanisms of solar energetic particles. Specifically, coronal mass ejections with width >180° (wide) and linear speed >800 km/s (fast) seem they have the best correlation with solar proton enhancements. The study of some specific solar parameters, such as soft X-ray flares, sunspot numbers, solar flare index etc. has showed that the soft X-ray flares with importance >M5 may provide a reasonable proxy index for the SPE production rate. From this work, it is outlined that the good relation of the fast and wide coronal mass ejections to proton enhancements seems to lead to a similar conclusion. In spite of the fact that in the case of CMEs the statistics cover only the last solar cycle, while the measurements of SXR flares are extended over three solar cycles, it is obvious for the studied period that the coronal mass ejections can also provide a good index for the solar proton production.  相似文献   

11.
The precipitation of solar energetic particles, protons as well as electrons, at high latitudes is commonly assumed to be homogeneous across both polar caps. Using Low-Earth Orbit POES (Polar Orbiting Environmental Satellites) we determine particle penetration ratios into the polar atmosphere for protons ranging from about 0.1 MeV to 500 MeV and for electrons spanning about one order of magnitude in energy with a maximum of 0.3 MeV. Based on power law fits for the POES spectrum we show, that for energies interesting for middle and lower atmosphere chemistry, particle flux over the poles is comparable in magnitude to flux at the geostationary orbit or at L1 in interplanetary space. The time period under study are the solar energetic particle (SEP) event series of October/November 2003 and January 2005.  相似文献   

12.
Solar energetic protons degrade performance and reliability of spacecraft systems due to single-event effects, total dose effects and displacement damage in electronics components including solar cells. On designing a solar cell panel, a total fluence of solar energetic protons (SEPs) which cause solar cell damage is needed to estimate power loss of the solar cells over mission life. Nowadays a solar panel area of spacecraft is increasing as spacecraft mission life becomes longer (15–18 years). Thus an accurate SEP model is strongly required for the cost-minimum design from the aerospace industry. The SEP model, JPL-91 proposed by Feynman et al., is currently used widely for solar cell designing. However, it is known that the JPL-91 model predicts higher fluences of protons than values actually experienced in space, especially after 7 years on orbit. In addition, the model is based on several assumptions, and also needs Monte-Carlo simulations for calculating fluences. In this study, we propose a new method for modeling SEPs especially focused on solar cell degradation. The newly-proposed method is empirical, which constructs a model based directly upon proton flux measurement data taken by instruments onboard spacecraft. This method has neither assumptions nor dependence on SEP event selection, both of which are needed in JPL-91. The model fluences derived from this method show lower fluences in longer missions compared to JPL-91. This method has been proposed to ISO (International Organization for Standardization) and has been discussed for a new standard SEP model.  相似文献   

13.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

14.
We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian.  相似文献   

15.
The solar flare of January 20, 2005 (X7.1, 06:36–07:26 UT, maximum at 07:01 UT by the GOES soft X-ray data) was the most powerful one in January 2005 series. The AVS-F apparatus onboard CORONAS-F registered γ-emission during soft X-ray rising phase of this flare in two energy ranges of 0.1–20 MeV and 2–140 MeV. The highest γ-ray energy registered during this flare was ∼140 MeV. Six spectral features were registered in energy spectrum of this solar flare: annihilation + αα (0.4–0.6 MeV), 24Mg + 20Ne + 28Si + neutron capture (1.7–2.3 MeV), 21Ne + 22Ne + 16O + 12С (3.2–5.0 MeV), 16O (5.3–6.9 MeV), one from neutral pions decay (25–110 MeV) and one in energy band 15–21 MeV. Four of them contain typical for solar flares lines – annihilation, nuclear de-excitation and neutron capture at 1H. Spectral feature caused by neutral pions decay was registered during several flares too. Some spectral peculiarities in the region of 15–21 MeV were first observed in solar flare energy spectrum.  相似文献   

16.
对第21~24太阳周不同等级的太阳X射线耀斑事件、太阳质子事件、地磁暴事件及高能电子增强事件的爆发频次特征进行统计,结果表明:太阳周耀斑爆发的总数量与该太阳周的黑子数峰值呈正比,耀斑总数、X级耀斑事件数与峰值的相关系数分别为0.974,0.997;太阳质子事件主要发生在峰年前后1~2年,约占总发生次数的80%,峰值通量大于10pfu (1 pfu=1 cm-2·sr-1·s-1)的质子事件中,84%伴有耀斑爆发,并且主要伴随M或X级耀斑,少量伴随C级耀斑,峰值通量大于1000pfu的质子事件中,98%伴随M或X级耀斑,并且以X级耀斑为主;第21,22,23和24太阳周发生地磁暴最频繁的时间分别在1982,1991,2003年和2015年,分别滞后黑子数峰值时间3年、2年、2年和1年;72%的高能电子增强事件发生在太阳周下降期,24%的高能电子增强事件发生在太阳周上升期.   相似文献   

17.
18.
High Energy Charged Particle Experiment (HECPE) is to measure the fluxes of MeV electrons and tens of MeV protons. The two satellites of KuaFu-B are in the same polar orbit with apogee 7.0RE, perigee 1.8RE. They can sweep large L values and pass through the inner and outer radiation belts. The high energy electrons and protons in the radiation belts are principal sources for failures of satellites and spacecrafts in the Earth orbits. The enhancements of the high energy electrons and protons, so-called energetic particle events, are important phenomena of the Space Weather. The energy ranges monitored by HECPE are 0.3–0.5 MeV, 0.5–1.0 MeV, 1.0–2.0 MeV, and E > 2.0 MeV for electrons, 5–10 MeV, 10–20 MeV, 20–40 MeV, and 40–80 MeV for protons.  相似文献   

19.
On January 20, 2005, 7:02–7:04 UT the Aragats Multichannel Muon Monitor (AMMM) registered enhancement of the high energy secondary muon flux (energy threshold ∼5 GeV). The enhancement, lasting 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES satellite and the ground level enhancement detected by the world-wide network of neutron monitors and by muon detectors. The most probable proton energy corresponding to the measured 5 GeV muon flux is within 23–30 GeV. Due to upmost importance of the detection of solar particles of highest energies in presented paper we perform detailed statistical analysis of the detected peak. The statistical technique introduced in the paper is also appropriate for the searches of sources of ultra-high energy cosmic rays.  相似文献   

20.
Using ACE and SOHO data the origin of quiet-time low-energy particle fluxes at 1 AU is studied in the 23rd solar cycle. One of the selection criteria of quiet-time periods is to demand that H/He < 10 provided that periods with noticeable contribution of remnants of gradual events have been excluded from consideration. Our results suggest different origin of 0.03–3 MeV/nucleon particles – different seed populations accelerated and different acceleration processes. During the ascending, maximum and descending phases of solar activity quiet-time ions consist of coronal particles accelerated to suprathermal energies in about a half of the quiet periods, the rest of quiet-time fluxes originates from particle acceleration in processes similar to those in small impulsive solar flares rich in Fe. At solar minimum the bulk solar wind particles serve as seed population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号