首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Numerical simulations of magnetic reconnection with uniform resistivity show that the length of the current sheet increases for increasing magnetic Reynolds number. In order to prevent the current sheet from growing in general the resistivity is assumed to be localized. For uniform resistivity the reconnection proceeds much slower than for localized resistivity. In this paper analytical solutions of the hydromagnetic equation are presented for localized and uniform resistivity. It is shown that there exists an essential singularity in the behaviour of a solution of magnetic reconnection in the limit of large magnetic Reynolds number: For prescribed boundary conditions the solution for localized resistivity does not approach the solution for uniform resistivity in the limit of large magnetic Reynolds number.  相似文献   

2.
The 2D MHD model of the flare magnetic reconnection shows that a reconnection activity, changes of the magnetic field topology and generation of waves are connected. It is found that after the phase of a quasi-stationary reconnection in the extended current sheet above the flare arcade the tearing mode instability produces the plasmoids which then can interact and generate MHD waves. Results of particle-in-cell simulations of the tearing processes, which accelerate electrons, are mentioned. Then all these processes are discussed from the point of view of possible radio emissions. While shocks can contribute to the type II radio burst, the superthermal electrons trapped in plasmoids can generate so called drifting pulsating structures. Furthermore, regions with the MHD turbulence may manifest themselves as the lace or dm-spike bursts.  相似文献   

3.
The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves.  相似文献   

4.
Recent Cluster observations have strongly supported the existence of meso-scale structure in the magnetotail current sheet. In our study, a magnetohydrodynamic simulation event study exhibited current sheet behavior comparable to that seen in the Cluster observations. Geotail and DoubleStar observations also show that the simulation is providing a realistic representation of the magnetosphere during the period of interest; that is, when the current sheet evidently becomes bifurcated. The magnetohydrodynamic simulation allows us to place the local observations into a global contest. It shows that the observations can be explained in terms of localized reconnection tailward of the Cluster location and the formation of a flux rope nearby. The simulation also features wave-like structure across the current sheet.  相似文献   

5.
This paper reports the spatial and temporal development of bursty bulk flows (BBFs) created by reconnection as well as current disruptions (CDs) in the near-Earth tail using our 3-D global electromagnetic (EM) particle simulation with a southward turning interplanetary magnetic field (IMF) in the context of the substorm onset. Recently, observations show that BBFs are often accompanied by current disruptions for triggering substorms. We have examined the dynamics of BBFs and CDs in order to understand the timing and triggering mechanism of substorms. As the solar wind with the southward IMF advances over the Earth, the near-Earth tail thins and the sheet current intensifies. Before the peak of the current density becomes maximum, reconnection takes place, which ejects particles from the reconnection region. Because of earthward flows the peak of the current density moves toward Earth. The characteristics of the earthward flows depend on the ions and electrons. Electrons flow back into the inflow region (the center of reconnection region), which provides current closure. Therefore the structure of electron flows near the reconnection region is rather complicated. In contrast, the ion earthward flows are generated far from the reconnection region. These earthward flows pile up near the Earth. The ions mainly drift toward the duskside. The electrons are diverted toward the dawnside. Due to the pile-up, dawnward current is generated near Earth. This dawnward current dissipates rapidly with the sheet current because of the opposite current direction, which coincides with the dipolarization in the near-Earth tail. At this time the wedge current may be created in our simulation model. This simulation study shows the sequence of the substorm dynamics in the near-Earth tail, which is similar to the features obtained by multisatellite observations. Identification of the timing and mechanism of triggering substorm onset requires further studies in conjunction with observations.  相似文献   

6.
The third-order accurate upwind compact difference scheme has been applied for the numerical study of the magnetic reconnection driven by a plasma blob impacting the heliospheric current sheet, under the framework of the two-dimensional compressible magnetohydrodynamics. The results show that the driven reconnection near the current sheet could occur in about 10–30 min for the interplanetary high magnetic Reynolds number, RM = 2000–10,000, a stable magnetic reconnection structure can be formed in hour order of magnitude, and there appear some basic properties such as the multiple X-line reconnections, vortex structures, filament current systems, splitting and collapse of the high-density plasma blob. These results are helpful in understanding and identifying the magnetic reconnection phenomena possibly occurring near the heliospheric current sheets.  相似文献   

7.
A semi-analytical model for the electrodynamic development of two-ribbon flares is presented. A current filament above a bipolar active region starts rising according to the model of Van Tend and Kuperus. Due to this motion large induced electric fields arise at a magnetic neutral line far below the filament, resulting in and associated with magnetic reconnection and the formation of a current sheet. The interaction of this current sheet with the original current filament, the background magnetic field and the boundary layer of the photosphere determine the further electrodynamic development of the flare. The model predicts the energy release, the time of maximum, the height of the energy source and other quantities reasonably well.  相似文献   

8.
9.
采用多步隐格式,对在瞬间形成的电流片的触发下的高剪切无力场的磁重联过程进行了数值模拟。磁重联首先在交界面处的非中性电流片区出现,然后向无力场区蔓延。在磁重联过程中,在无力场区形成一高温环状结构,物质向光球层流动。在高温环内侧的新喷发场区,物质向上流动。磁重联主要集中在初始电流片外侧的高剪切无力场区,高温环顶部的温度最高,位置基本固定。在磁重联的过程中,剪切磁场分量的空间梯度减小,无力场因子下降。  相似文献   

10.
Two-dimensional compressible magnetohydrodynamic simulations of current sheet dynamics under the influence of multiple anomalous resistivity areas and slight asymmetries are presented. Following induced tearing and multiple coalescence, a plasmoid is formed and accelerated. Dominant X-points drive the dynamical evolution and lead to transient occurrence of a Petschek-like reconnection geometry. The dependence of current density extrema, plasmoid bulk velocity and maximum reconnection rate on the Lundquist number is examined.  相似文献   

11.
The paper presents a summary of results from two different simulations which study the tearing, coalescence and fragmentation of current sheets, the associated production of energetic electrons and of plasma waves from these electrons which could explain drifting pulsation structures observed at radio wavelengths. Using a 2.5-D particle-in-cell (PIC) model of the current sheet it is shown that due to the tearing mode instability the current sheet tears into plasmoids and these plasmoids later on coalesce into larger ones. During these processes electrons are accelerated and they produce observable electromagnetic waves. Furthermore, the 3-D PIC model with two current sheets extended in the electric current direction shows their fast fragmentation associated with the exponential dissipation of the free magnetic field energy. An example of the drifting pulsating structure which is considered to be a radio signature of the above mentioned processes in solar flares is shown.  相似文献   

12.
无碰撞电流片哨声波不稳定性   总被引:3,自引:3,他引:0  
通过数值求解文献[4]中物理模型A得到的一般形式的色散关系,讨论了无碰撞电流片低频波不稳定性问题.结果表明,哨声波能被无碰撞电流片直接激发.在中性片上(z/di=0),在较宽的波数范围内,斜哨声波是可以传播的,但它基本上是稳定的.在离子惯性区内(z/di<1,电子惯性区外),斜传播的哨声波是不稳定的.在离子惯性区边缘(z/di=1),斜传播的哨声波仍然是不稳定的,增长率更大,不稳定的波频率范围更高.此外,朝向中性片方向传播(kzdi<0)的哨声波比离开中性片方向传播(kzdi>0)的哨声波有更大的增长率.  相似文献   

13.
Substorm evolution of the near-Earth (|X|<15 RE) plasma sheet has been emphasized recently because the inner tail is thought to link closely to the substorm auroral activity in the ionosphere during the early stage of substorms. In this paper, we discuss how the inner tail substorm phenomena during the late substorm growth phase and early expansion phase are accounted for by the two prevailing substorm models, namely, the near-Earth neutral line model and the current disruption model. We find that the late growth phase features are more satisfactorily accounted for by the current disruption model than by the near-Earth neutral line model. In addition, detailed observations on current disruption show evidence inconsistent with the proposed idea of dipolarization being due to plasma flow braking from reconnection in the mid-tail region, which poses a difficulty to the near-Earth neutral line model as well.  相似文献   

14.
利用ACE和WIND卫星2007年1月6日的联合探测, 在1AU附近发现了一个等离子体密度极低的Petschek-like重联喷流区. 该喷流区内部出现了非常明显的Hall双极磁场、等离子体密度下降区以及与Hall电流相符的低能段电子投掷角分布. 这些特征与重联离子扩散区的Hall效应非常吻合, 说明很可能在太阳风中观测到了一个离子扩散区. 分析表明, 与之相关的磁场重联为准稳态快速完全反向重联, 其扩散区以一对慢模波为边界, 空间尺度达到80个离子惯性长度, 表现出了大尺度重联的特征.   相似文献   

15.
本文基于可压缩磁流体动力学模型,数值研究了尾瓣巾具有超Alfven速流动的等离子体彗尾的动力学特征。结果表明,等离子体片和尾瓣之间的剪切等离子体流动将会激发流动撕裂模不稳定性,引起彗尾等离子体片中发生磁场重联,形成磁岛和高密度的等离子体团。进而模拟了太阳风引起的局部驱动力对等离子体彗尾中磁场重联的影响,其特征时间远大于流动撕裂模。我们认为一些观测到的等离子体彗尾中的四块和彗尾截断事件可能主要与彗尾中剪切等离子体流动所引起的流动撕裂模不稳定性有关。   相似文献   

16.
2001年9月15日Cluster卫星对电流片的观测研究   总被引:1,自引:0,他引:1  
2001年9月15日0430-0515 UT期间,Cluster卫星多次穿越磁尾电流片.由FGM、CIS等仪器获得了电流片磁场,粒子速度等数据变化情况,并得到了磁尾高速流的两次明显反转.本文采用GSM坐标系.利用求磁场空间梯度张量的方法获得了越尾电流,其电流密度的峰值为28nA/m2.并对电流片在垂直方向上的摆动和在晨昏方向的波动现象进行了分析.数据显示此时电流片为薄电流片并有一个变薄的趋势,其厚度大约为0.2-0.3 Re.磁场重联时地向流与尾向流均超过了1000 km/s,并测得了电流片的法线方向和运动速度,从而得到了磁尾电流片的结构和运动情况.   相似文献   

17.
During conditions of northward interplanetary magnetic field (IMF), the near-tail plasma sheet is known to become denser and cooler, and is described as the cold-dense plasma sheet (CDPS). While its source is likely the solar wind, the prominent penetration mechanisms are less clear. The two main candidates are solar wind direct capture via double high-latitude reconnection on the dayside and Kelvin–Helmholtz/diffusive processes at the flank magnetopause. This paper presents a case study on the formation of the CDPS utilizing a wide variety of space- and ground-based observations, but primarily from the Double Star and Polar spacecraft on December 5th, 2004. The pertinent observations can be summarized as follows: TC-1 observes quasi-periodic (∼2 min period) cold-dense boundary layer (compared to a hot-tenuous plasma sheet) signatures interspersed with magnetosheath plasma at the dusk flank magnetopause near the dawn-dusk terminator. Analysis of this region suggests the boundary to be Kelvin–Helmholtz unstable and that plasma transport is ongoing across the boundary. At the same time, IMAGE spacecraft and ground based SuperDARN measurements provide evidence of high-latitude reconnection in both hemispheres. The Polar spacecraft, located in the southern hemisphere afternoon sector, sunward of TC-1, observes a persistent boundary layer with no obvious signature of boundary waves. The plasma is of a similar appearance to that observed by TC-1 inside the boundary layer further down the dusk flank, and by TC-2 in the near-Earth magnetotail. We present comparisons of electron phase space distributions between the spacecraft. Although the dayside boundary layer at Polar is most likely formed via double high-altitude reconnection, and is somewhat comparable to the flank boundary layer at Double Star, some differences argue in favour of additional transport that augment solar wind plasma entry into the tail regions.  相似文献   

18.
Three dimensional structure of the fast convection flow in the plasma sheet is examined using magnetohydrodynamic (MHD) simulations on the basis of spontaneous fast reconnection model. The fast flow observed in the near-Earth magnetotail is one of the key phenomena in order to understand the causal relationship between magnetic substorm and magnetic reconnection. In this paper, we focus on this earthward fast flow in the near-Earth magnetotail. Our previous studies have shown that the fast reconnection produces the Alfvénic fast reconnection outflow and drastic magnetic field dipolarization in the finite extent. In this paper, the results of our simulations are compared with those of the in-situ observations in the geomagnetotail. They have consistent temporal profiles of the plasma quantities. It is suggested that the fast convection flows are caused by spontaneous fast reconnection.  相似文献   

19.
1997年 1月 10日磁暴期间, Geotail卫星在向阳侧的磁鞘中观测到了磁层氧离子突增事件.这些氧离子的出现和磁鞘中存在很强的南向行星际磁场有关.事件期间向阳面发生了准静态的磁重联,氧离子流存在由北向南的速度分量.通量突增过程具有逆向和正向能量色散现象,磁层内部只有氧离子有可能被梯度漂移输送到重联区,所以只有氧离子在磁鞘中持续地被观测到.估计氧离子的逃逸速率为 0.61× 1023/s,大约为环电流氧离子输入率的 33%.大量的环电流氧离子由磁层跑到了磁鞘,导致环电流指数 ASY-H呈现明显的非对称性.  相似文献   

20.
The patterns of reconnection in the Earth magnetotail and in the solar corona above the active region are presented. The electric field and field-aligned currents (FAC) generation in the current sheet are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号