首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The electromagnetic coupling between the seismically activated area and the ionosphere is considered within the framework of the Global Electric Circuit (GEC) conception. First we consider the anomalous variations in the ionosphere associated with the earthquake preparation process, their temporal and spatial characteristics using the results from recent publications. Then the GEC conception is presented shortly with main accent put on ionization processes which play key role in the complex chain of physical and chemical interactions changing the electric properties of the planetary boundary layer of atmosphere. We treat this part of troposphere as an open complex system with dissipation where so called “blow up” processes are developed leading to sharp and fast changes of atmospheric parameters including the electric properties of the boundary layer. The new concept named Spatial Scintillation Index is introduced in the last part of the paper. In general, this paper may be considered as a short review of the recent achievements in understanding of the seismo-ionospheric coupling.  相似文献   

2.
The downward field-aligned current region plays an active role in magnetosphere–ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. Other phenomena including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from high-altitude Cluster observations with particular emphasis on the characteristics and dynamics of quasi-static electric field structures. These, extending up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at softer boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft, indicates that the formation of electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures are typically decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The electric field coupling further depends on the current–voltage relationship, which is highly non-linear in the downward current region, and still unrevealed, as to its specific form.  相似文献   

3.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

4.
One essential component of magnetosphere and ionosphere coupling is the closure of the ring current through Region 2 field-aligned current (FAC). Using the Comprehensive Ring Current Model (CRCM), which includes magnetosphere and ionosphere coupling by solving the kinetic equation of ring current particles and the closure of the electric currents between the two regions, we have investigated the effects of high latitude potential, ionospheric conductivity, plasma sheet density and different magnetic field models on the development of Region 2 field-aligned currents, and the relationship between R2 FACs and the ring current. It is shown that an increase in high latitude potential, ionospheric conductivity or plasma sheet density generally results in an increase in Region 2 FACs’ intensity, but R2 FACs display different local time and latitudinal distributions for changes in each parameter due to the different mechanisms involved. Our simulation results show that the magnetic field configuration of the inner magnetosphere is also an important factor in the development of Region 2 field-aligned current. More numerical experiments and observational results are needed in further our understanding of the complex relationship of the two current systems.  相似文献   

5.
Lightning discharges by thunderstorms cause generation of electromagnetic pulses and of quasi-electrostatic fields (QESF) in the atmosphere above, which occur in different time-scales. QESF penetrate into the mesosphere and the lower ionosphere where they are big enough to generate considerable electric charge transfer there and, in some cases, to cause red sprites. These processes may have an important contribution to the global atmospheric electric circuit. Significant transient variations of the ionospheric potential above the thunderstorm take place as well. QESF depend on the atmospheric conductivity and in the ionosphere they are affected also by its anisotropy determined by geomagnetic field orientation. QESF after a lightning discharge are investigated theoretically in this work in the case of equatorial latitudes (by horizontal geomagnetic field), where thunderstorms are important contributors to the global circuit. Results for DC electric fields in the lower equatorial ionosphere above a thundercloud obtained by earlier models demonstrate some specific features of the spatial distribution of these fields, which appear due to geomagnetic field orientation. Thus, the electric fields can be shifted by tens or more kilometers to east of the cloud charge region; also their horizontal scale is much bigger than in the case of middle latitudes. Here, a presence of similar specific features of quasi-electrostatic field distributions and ionospheric potential variations caused by a lightning stroke is studied. A situation when no secondary ionization is generated is considered. A model based on the Maxwell equations for potential electric fields is proposed. Computations of QESF in the middle atmosphere and of the ionospheric potential variations are provided as dependent on conductivity and its anisotropy in D-region. The obtained results for the ionosphere show that the electric fields in the equatorial lower ionosphere are comparable to these formed in the case of middle latitudes. However, their horizontal scales are much bigger and depend on conductivity profiles. Similar features are valid also for the ionospheric potential variations and for their horizontal scales.  相似文献   

6.
震前地震孕育期地表异常增强的电场,通过大气电导率传输到电离层高度.该异常电场通过非稳态局部加热,可以在电离层高度激发声重波.基于该理论,利用一维时变中纬电离层物理模型,模拟了该扰动源对电离层电子密度的影响.结果表明,重力波引起的中性风速度扰动对电离层电子密度分布影响甚微,该机理无法解释震前电离层异常扰动现象.   相似文献   

7.
设计了一个将电离层水平电场与风场耦合的模拟方案,研究了电流函数和风场在耦合前后的变化与差异. 研究发现,水平电场与风场相互反馈后,风场的变化比电流函数小. 经向风在白天有较明显的差异,夜晚的差异比白天小,主要出现在中高纬地区,并随高度的增加而增大,300km左右达到最大值,其后几乎保持不变. 纬向风有与经向风相似的变化,但纬向风耦合前后的差异比经向风小. 电流函数在耦合后有较大改变,两个涡旋强度都有较强增加,并且北半球的增强大于南半球,而夜晚差异较小. 结果表明,在研究的高度范围内,风场对电场的控制作用大于电场对风场的影响.   相似文献   

8.
We develop our earlier attempts to perform an indirect quantitative examination of the hypothesis that electric currents flowing up from thunderstorms to the ionosphere (also known as Wilson currents) charge the ionosphere to a large positive potential with respect to the Earth. First, we take the electrostatic potential arising from the interaction of the solar wind with the Earth’s magnetosphere derived from an experimental data-based model of the high-latitude field-aligned currents. We then obtain the global distribution of ionospheric potential, utilizing a thin shell model, based on integration along field lines of the current continuity equation with a realistic model of ionospheric conductivity. Next, we include additional upward currents to simulate the effect of the three main thunderstorm regions over equatorial Asia/Oceania, Africa and the Americas. We compare the local time variation of the eastward electric field in the ionosphere produced by these three equatorial sources separately, and seek to understand the substantial differences between them. Finally, we examine the variation with local time of the eastward electric field in the ionosphere at low latitudes.  相似文献   

9.
The vertical field in the stratosphere around 35 km is predominantly of atmospheric origin whereas the horizontal electric field at these altitude is mainly of ionospheric origin. The electrical coupling between ionosphere and atmosphere is not known for low latitudes. Balloon borne electric field measurements are planned from Hyderabad, India (geographic latitude 17.5° N) to understand this coupling. Measurement of stratospheric electric fields are also important from the point of view of the sun-weather relationship. It si suggested that the balloon borne electric field measurements are important to understand the electrodynamics of the middle atmosphere.  相似文献   

10.
雷暴云准静电场和夜间低电离层的电离   总被引:2,自引:0,他引:2  
用点电荷模型计算雷暴云突然放电后形成的准静电后形成的准静电场随高度的分布,以E/N(E的电场大小,N为大气密度)为输入参量,在一定条件下,对Boltzmann方程数值求解,计算电离层电子数密度的扰动。计算结果表明,在约70-90km之间,在约放电后的10ms内,准静电场大于中性大气的击穿电场,将引起大气的雪崩电离,从而引起夜间低电离层电子密度的显著增加,但这种电子密度的增加是暂的,在很短的时期内就恢复到平静时的水平,恢复时间随高度的变化而不同。  相似文献   

11.
This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.   相似文献   

12.
In this national biannual report, we will outline some recent progresses in ionospheric studies conducted by Chinese scientists since 2012. The mentioned aspects include: the solar activity control of the ionosphere; couplings between the ionosphere, lower atmosphere and plasmasphere;ionospheric climatology and disturbances; ionospheric irregularities and scintillation; models, data assimilation and simulations; unusual phenomena of the ionosphere; possible seismic signatures presented in ionospheric observations, and some methodology progresses. These progresses will enhance our ability to observe the ionosphere, provide more reasonable understanding about the states of the ionosphere and underlying fundamental processes, and stimulate ionospheric modeling, forecasting and related applications.  相似文献   

13.
化学物质释放人工改变电离层   总被引:4,自引:4,他引:4  
考虑中性气体在电离层高度的扩散过程和相应的电离层离子化学过程,研究了利用主动化学物质释放来改变电离层的方法,理论计算了H2O和SF6两种气体释放后电离层随时间的响应过程,结果表明,在电离层高度上气体的扩散过程非常迅速,电离层F区的电子密度有很大程度的减少,而扩散慢且化学反应快的气体对电离层的影响更大,就更加有利于电离层洞的形成。  相似文献   

14.
讨论了在各向同性的均匀无耗电离层背景下激励参量不稳定性的三波耦合过程.首先从波的非线性耦合理论出发,分析入射电磁波和多个等离子体本征波模间的耦合情况;然后得到了无耗情况下参量激励过程满足的色散关系,在激励等离子体波的临界情况下表现为两种频率和波矢匹配条件,进而从理论上证明最容易激励参量不稳定性的条件是耦合生成电子Langmuir波和离子声波.  相似文献   

15.
本文在指数导电率大气中,在给定电离层电位情况下,考虑雷暴充电电流源以后,解析地求解了稳态电流守恒方程,获得了大气电位分布的解析表达式.考察这一表达式可以看到,雷暴充电对大气电位的影响和电离层电位对大气电位的影响主要都是垂直地起作用的.从观测到的雷暴充电电流密度的数值以及其他性质出发,利用本文得到的解析表达式进行计算可看到,雷暴充电作用能够使电层高度上的电位上升到由观测所推出的电层电位应具有的数值.数例结果还表明,电离层电位能通过对雷暴上空电层电位值的显著影响而对晴天区低层大气电状态发生作用.   相似文献   

16.
地面入射的大功率高频无线电波(泵波)和电离层等离子体之间的参数相互作用,能够引起静电波的激发,在一定条件下,产生不稳定性.本文用PIC静电粒子模拟方法,研究泵波与赤道电离层E区等离子体的相互作用.研究结果表明,泵波能够控制双流不稳定性的发生,在不同条件下,泵波对双流不稳定性起着稳定与不稳作用,模拟结果定性地与理论研究结果相符合,这为我们对不规则体产生的地面人工控制提供了依据.  相似文献   

17.
The equatorial ionosphere and thermosphere constitute a coupled system, with its electro dynamical and plasma physical processes being responsible for a variety of ionospheric phenomena peculiar to the equatorial region. The most important of these phenomena are: the equatorial electrojet (EEJ) current system and its instabilities, the equatorial ionization anomaly (EIA), and the plasma instabilities/irregularities of the night ionosphere (associated with the plasma bubble events – ESF). They constitute the major topics of investigations having both scientific and practical objectives. The tidal wind interaction with the geomagnetic field is responsible for the atmospheric dynamo electric fields, that together with the wind system, drives the major phenomena, under quiet conditions. Drastic modifications of these phenomena can occur due to magnetospheric forcing under solar-, interplanetary- and magnetospheric disturbances. They can also undergo significant modifications due to forcing by atmospheric waves (such as planetary- and atmospheric gravity waves) propagating upward or from extra tropics. This article will focus on the ambient conditions of the ionosphere–thermosphere system and the electro dynamics and plasma instability processes that govern the plasma irregularity generation. Major emphasis is given to problems related to the structuring of the equatorial night ionosphere through plasma bubble/ESF irregularity processes. Specific topics to be covered will include: equatorial electric fields, thermospheric winds, sunset electrodynamic processes, plasma drifts, EEJ plasma instability/irregularity generation, nighttime/post sunset plasma bubble irregularity generation, and very briefly, disturbance electric fields and winds and their effect on the ionization anomaly, the TEC and ESF/plasma bubble irregularities.  相似文献   

18.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   

19.
This paper reviews various progresses on the ionospheric studies by the scientists in China during the last two years.The main contents concern the 4 aspects of the ionospheric re-search:(1) ionospheric weather and coupling with magnetosphere(polar and auroral ionosphere,ionospheric response to substorms,ionospheric storms);(2) mid-and low-latitude ionospheric clima-tology(ionospheric properties,yearly variations and solar activity dependence,long term variation);(3) ionospheric coupling with neutral atmosphere(gravity waves,tides,planetary waves,background upper atmosphere,and ionospheric response);and(4) ionospheric diagnostics(observation,modeling,and prediction).  相似文献   

20.
This paper reviews various progresses on the ionospheric studies by the scientists in China during the last two years.The main contents concern the 4 aspects of the ionospheric research:(1)ionospheric weather and coupling with magnetosphere(polar and auroral ionosphere,ionospheric response to substorms,ionospheric storms);(2)mid-and low-latitude ionospheric climatology(ionospheric properties,yearly variations and solar activity dependence,long term variation);(3)ionospheric coupling with neutral atmosphere(gravity waves,tides,planetary waves,background upper atmosphere,and ionospheric response);and(4)ionospheric diagnostics(observation,modeling,and prediction).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号