共查询到20条相似文献,搜索用时 15 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(7):1685-1700
Pc4 signatures for the year 2013, extracted from geomagnetic north–south and east–west components of induction coil magnetometer (LEMI 30) from low latitude station Desalpar (DSP), operated by Institute of Seismological Research (ISR), India have been investigated vis-à-vis the prevalent interplanetary parameters (IMF) as well as the geomagnetic activity indices. A clear dominance of Pc4-5 (467 events) over Pc3 (17 events) is observed. Local time variation of Pc4 shows a peak in the noon sector in both X and Y components. Our investigations show that the dominant peak frequency is 10 mHz at low latitude region. Correlations with solar wind and IMF parameters illustrate highest occurrence of Pc4 for a solar wind speed of 300–400 km/s and average IMF B field of 3–6 nT. The amplitude of Pc4s at DSP shows an increase with increasing solar wind speed, plasma density, solar wind dynamic pressure and average B field which is also reflected in the trend of frequency variation of these pulsations. We report that IMF clock angle at low latitude does not have influence on Pc4 occurrence. Based on the characteristics of these events, detected in latitudinally distributed stations from low and mid-latitudes from northern and southern hemisphere, we infer that modes were compressional, which could be driven by K-H instability or solar wind dynamic pressure, as compressional modes can propagate to low latitude with little attenuation. 相似文献
2.
Anand K. Singh A.K. Sinha Rahul Rawat Bulusu Jayashree B.M. Pathan Ajay Dhar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Magnetic data from a newly commissioned Indian Antarctic station Bharati (corrected geomagnetic (CGM) coordinates 74.7°S, 97.2°E) and closely-spaced IMAGE chain observatories (∼100° magnetic meridian in Northern hemisphere) has been analyzed to study the climatology of substorms which were localized poleward of the standard auroral oval. We considered four austral summers (year 2007–2010) when data from Bharati was available. Several very high latitude substorms were observed in this duration when the solar activity remained unexpectedly low for a long time. Various features of very high latitude substorms, e.g., local time dependence, interplanetary state, hemispherical asymmetry and their nightside low latitude signatures are examined. Events studied here, suggested the following properties of substorms occurring at very high latitudes: (1) maximum occurrence was observed near magnetic midnight (21:00–02:00 MLT). (2) In contradiction to earlier reports, many substorms were observed even during negative IMF Bz condition. In addition, majority of substorms occurred during low or moderate solar wind streams. (3) Magnetic signatures were often pronounced in the winter hemisphere. (4) Even if widely used standard AE indices fail to monitor very high latitude substorms, their low latitude signatures are often evident. 相似文献
3.
1996年10月至11月29日在地磁北纬29.6°附近的新疆喀什,甘肃安西和北京,沿东西方向建立了地磁脉动观测台链。根据观测数据,研究了低纬Pi2脉动东西方向的传播和性和偏振特性,发现黄昏区以东向传播的右旋偏振为主。 相似文献
4.
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency, ULF), 是磁层与电离层耦合的重要瞬态响应, 其发生与亚暴爆发有密切的关系. Pi2脉动作为地球磁层中的一种扰动现象, 其发生信号隐藏在地磁场分量观测数据中. 面对持续增长的观测数据量, 如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生, 是构建Pi2脉动识别模型的关键. 利用子午工程磁通门磁力仪观测的地磁场分量数据, 基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network, 1D-ResCNN), 构建了一个端到端的Pi2脉动识别模型, 用于判别某段地磁场分量观测数据中是否有Pi2脉动发生. 实验结果表明, 该模型与现有公开发表的Pi2脉动机器学习识别模型相比, 具有更高的识别准确率和更低的虚报率、漏报率. 相似文献
5.
利用南极极点站(磁纬约75°)1986年31-38kHz频率的VLF波数据和卫星观测的IMFBy分量数据,分析研究了IMF晨昏分量By对高纬VLF极光嘶声统计发生率周日分布的影响。结果发现,By对极光嘶声的统计发生率的磁地方对(MLT)分布有明显的调制作用。磁正午前后的VLF统计发生率不对称,By为正,午后发生率大于午前,By为负,午前发生率大于午后,By极性对夜侧VLF发生频次的磁地方时分布也有 相似文献
6.
利用新建成的子午工程地磁台站数据,对比分析了地磁平静期间(2011年3月20-27日)和磁暴期间(2011年9月25日至10月1日)Pc3-4地磁脉动的时空分布特征及其对行星际条件的响应.数据分析结果表明,中低纬度(1.3<L<2.3,L为磁壳参数)的Pc3-4地磁脉动在这两个时期内的分布存在明显的晨昏不对称性,在昼侧前出现明显的Pc3-4地磁脉动并与行星际上游波动密切相关,其振幅增强可能与太阳风动压脉冲相关,高速太阳风更易导致Pc3-4地磁脉动;而对于近赤道低纬(L<1.3)区域,无论是在地磁平静期还是磁暴期均未能观测到Pc3-4地磁脉动,Pc3-4地磁脉动存在明显的纬度效应. 相似文献
7.
以ACE卫星实时观测数据驱动的全球磁流体模拟为背景场,选取2003年10月22-24日行星际磁场(IMF)持续北向的事件,使用试验粒子方法,对太阳风粒子向磁层输运的过程进行模拟研究,分析北向IMF下太阳风粒子注入磁层过程中粒子在磁层内的空间分布和时间演化特征。IMF北向期间,进入环电流区域的粒子在晨侧区域的密度大于昏侧,且晨侧的粒子分布范围更广。背阳面磁鞘中的太阳风粒子可以通过低纬边界层进入磁层,但很难通过南北侧磁层顶进入磁层。进入磁尾的太阳风粒子聚集形成冷而密的等离子体片(CDPS),模拟中CDPS的空间分布和密度大小与观测数据符合。在IMF长时间北向期间,磁尾的粒子数量呈现随时间增长的趋势,并存在约20 min的小幅度准周期变化和约5~6 h的较大幅度的准周期变化。 相似文献
8.
利用THEMIS卫星观测结果,分析2008年3月13日10:40UT-12:10UT的一次中等亚暴事件在磁尾的全球演化过程.在该过程中,THEMIS的5颗卫星在午夜区附近沿x轴依次排列,离地心距离约8.7~13.2Re.亚暴触发开始后,磁场偶极化和等离子体片的膨胀依次被在磁尾不同位置的卫星观测到.等离子体尾向膨胀的平均速度约为140km·s-1.在此次亚暴事件中可观测到两种类型的偶极化.一种为偶极化锋面,其与爆发性整体流(BBF)密切相关;另一种为全球偶极化,其与等离子体片的膨胀密切相关.亚暴触发开始约7min后,THEMIS卫星在低中高纬都可以观测到Pi2脉动的发生,且Pi2脉动的振幅随着纬度的升高逐渐变大.此次亚暴事件中的离子整体流速度主要是由离子电漂移速度引起的,测得的电场为局地磁通量变化导致的感应电场. 相似文献
9.
I.S. Veselovsky V. Bothmer P. Cargill A.V. Dmitriev K.G. Ivanov E. Romashets A.N. Zhukov O.S. Yakovchouk 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2460-2464
Times of sustained strong northward IMF can interrupt the magnetic storm development and lead to lower levels of geomagnetic activity for many hours. During 1997–2000 we have found two events of this kind observed on November 8, 1998 and October 13, 2000. In both cases, the storms started as usual after arrival of ejecta with a southward IMF component from the Sun to the Earth, but ceased after several hours due to the onset of sustained northward IMF leading to the faster recovery process. After the passage of this so-called positive domain, the storm development started again. The heliospheric magnetic field intensity remained enhanced and nearly constant. The solar origins of the geomagnetic storm interruptions have been investigated. Tentatively they may be related to strong nonlinear Alfvйn type solitary waves excited by non-stationary coronal current variations with a characteristic time-scale of about a day. 相似文献
10.
Y.S. Ge C.T. RussellT.-S. Hsu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1243-1251
In 2001, 2002 and 2003, the Polar spacecraft probed the near equatorial plasma sheet at 9 RE near local midnight. Using the magnetic field observations, the signatures at substorm onsets are studied. Close to the flux pile-up region, the Polar spacecraft readily detects the dipolarization front, especially for pseudo onsets. An event with two distinct onsets has been examined. The signatures are found to be consistent with the multiple-onset model suggested by Russell [Russell, C.T. How northward turnings of the IMF can lead to substorm expansion onsets. Geophys. Res. Lett. 27, 3257–3259, 2000] which is a modified Near-Earth Neutral Line (NENL) model. Another similar event is also examined showing the effects of different Interplanetary Magnetic Field (IMF) conditions upon substorms. Moreover, ground effects can be very weak compared to in situ observations, especially for pseudo onsets, because these signatures appear to be localized and not global. 相似文献
11.
V.I. Degtyarev I.P. Kharchenko A.S. Potapov B. Tsegmed S.E. Chudnenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
It is well known that during many but not all of the geomagnetic storms enhanced fluxes of high-energy electrons are observed in the outer radiation belt. Here we examine relativistic (>2 MeV) electron fluxes measured by GOES at the synchronous orbit and on-ground observations of two types of ULF pulsations during 30 magnetic storms occurred during 1996–2000. To characterize the effectiveness of the chosen magnetic storms in producing relativistic electron fluxes, following to (Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.R. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, doi:10.1029/2002GL016513, 2003), we calculate a ratio of the maximum daily-averaged electron flux measured during the recovery phase, to the mean pre-storm electron flux. A storm is considered an effective one if its ratio exceeds 2. We compare behavior of Pi1 and Pc5 geomagnetic pulsations during effective and non-effective storms and find a tendency for a storm efficiency to be higher when the mid-latitude Pi1 pulsations are observed for a long time during the magnetic storm main phase. We note also that the prolonged powerful Pc5 pulsation activity during the recovery phase of a magnetic storm is the necessary condition for the storm effectiveness. To interpret the found dependences, we suggest that there are two prerequisites for generating relativistic electron populations during a storm: (1) the availability of seed electrons in the magnetosphere, and Pi1 emissions are indicators of the mid-energy electron interaction with the ionosphere and (2) acceleration of the seed electrons to MeV energies, and interaction of electrons with the MHD wave activity in the Pc5 range is one of the most probable mechanisms proposed in the literature for this purpose. 相似文献
12.
This is a concise review of physics of the substorm in the magnetotail. It consists of two parts. The first part summarizes historical developments in the early days of the space age (1960--1975) when the basic concepts such as magnetotail and reconnection were established and the leading model of the substorm was introduced. The second part is an overview of the research conducted in recent years (1995--2010) when very significant advances have been achieved in understanding the substorm physics by virtue of several major satellites missions that addressed the magnetotail physics intensively. 相似文献
13.
R.N. Boroyev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):302-308
In the present paper dependences of substorm activity on the solar wind velocity and southward component (Bz) of interplanetary magnetic field (IMF) during the main phase of magnetic storms, induced by the CIR and ICME events, is studied. Strong magnetic storms with close values of Dstmin?≈??100?±?10?nT are considered. For the period of 1979–2017 there are selected 26 magnetic storms induced by the CIR and ICME (MC?+?Ejecta) events. It is shown that for the CIR and ICME events the average value of the AE index (AEaver) at the main phase of magnetic storm correlates with the solar wind electric field. The highest correlation coefficient (r?=?0.73) is observed for the magnetic storms induced by the CIR events. It is found that the AEaver for magnetic storms induced by ICME events, unlike CIR events, increases with the growth of average value of the southward IMF Bz module. The analysis of dependence between the AEaver and average value of the solar wind velocity (Vswaver) during the main phase of magnetic storm shows that in the CIR events, unlike ICME, the AEaver correlates on the Vswaver. 相似文献
14.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(1):1137-1145
The relationship of auroral activity indices (AE, Kp, SME) with interplanetary medium parameters during the main phase of magnetic storms is studied. For the period 1990–2020, 142 magnetic storms driven by (41) Sheath, (61) CIR, and (40) ICME events are selected. It is found that the correlation coefficient between average values of the SME index and the SW electric field for Sheath (r = 0.75) is close to correlation coefficients for CIR and ICME events. The correlation coefficient between Kpaver&Eswaver (r = 0.72) is higher than the correlation coefficient between AEaver&Eswaver (r = 0.63) at the main phase of magnetic storms induced by the Sheath events. It is shown that average values of SW dynamic pressure and IMF σB fluctuations correlate each other for all types of SW. 相似文献
15.
I.B. Ievenko S.G. ParnikovV.N. Alexeyev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1252-1260
Investigation results of a diffuse aurora (DA) and stable auroral red (SAR) arc dynamics based on spectrophotometric observations at the Yakutsk meridian (199°E geomagnetic longitude) are presented. The relationship of an equatorward extension of DA in the 557.7 nm emission to a substorm growth phase during the magnetospheric convection intensification after the turn of IMF BZ to the south is shown. The formation of SAR arc during the substorm expansion phase is investigated. The association of SAR arc dynamics with the development of asymmetric ring current (substorm injection) during the main phase of a storm is analyzed. It is shown how the pulsating precipitations of energetic ring current particles develop in the outer plasmasphere based on photometric observations. 相似文献
16.
Results of our investigation showed that occurrence frequency of Pi2 over a 24 hour period undergoes seasonal variations in time coincidence with foF2. In the winter months, at sunrise and sunset (when foF2gradients are the largest) the observation probability of these oscillations is minimal. At periods of summer solstice when the F2-layer persists almost round the clock, no effect of Pi2 pulsation attenuation is observed at sunrise and sunset. The pulsation amplitudes behave in a similar manner. Results of this study suggest the conclusion that the propagation of signal from the Pi2 sourse into the mid-latitudes, and also the parameters of these pulsations are essentially affected by electron density in the ionospheric F2-layer. 相似文献
17.
利用卫星和地面台站的历史数据, 研究了中低纬电离层f0F2 对强行星际磁场南向翻转的响应. 结果表明, 行星际磁场南向翻转能引起电离层扰动式响应, 响应特性与纬度、季节和翻转时刻的地方时有关. 在中纬, 发生在夏分季和夜间的翻转能造成较强的电离层负响应, 其幅度随纬度的降低而变弱, 在恢复过程中存在不规则振荡; 在低纬, 南向翻转引起的电离层响应在夏分季较强, 在冬季则较弱, 且易被淹没在电离层自身的扰动中. 分析指出电离层最大负响应与翻转后南向磁场极大值之间有着较好的线性关系. 相似文献
18.
L.Q. Zhang C. Wang J.Y. Wang A.T.Y. Lui 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3077-3087
Utilizing ACE satellite observations from 1998 to 2009, we performed the elaborate study on the properties of the clock angle θCA (arctan(By/Bz) (?90° to 90°) of the interplanetary magnetic field (IMF) in the solar wind at 1?AU. The solar wind with northward IMF (NW-IMF) and southward IMF (SW-IMF) are analyzed, independently. Statistical analysis shows that the solar wind with SW-IMF and NW-IMF has similar properties in general, including their durations, the IMF Bz and By components, and the IMF θCA. Then, the solar wind with NW-IMF (SW-IMF) is classified into five different temporal scales according to the duration of the NW-IMF (SW-IMF), i.e., very-short wind of 10–30?min, short-scale wind of 0.5–1?h, moderate-scale wind of 1–3?h, long-scale wind of 3–5?h, and super-long wind >5?h. Our analysis reveals that the IMF θCA has a distinct decrease with increase of the temporal scale of the solar wind. Next, the solar wind is classified into two groups, i.e., the high-speed solar wind (>450?km/s) and the low-speed solar wind (<450?km/s). Our analysis indicates that the IMF θCA depends highly on the solar wind speed. Statistically, high-speed solar wind tends to have larger IMF θCA than low-speed solar wind. The evolutions of the solar wind and IMF with the solar activity are further studied, revealing no clear solar variation of the IMF θCA. Finally, we analyze the monthly variation of the IMF θCA. Superposed epoch result strongly suggests the seasonal variation of the IMF θCA. 相似文献
19.
利用Cluster卫星的磁场和等离子体探测数据, 研究了行星际磁场(IMF)时钟角(clock angle) Φ和锥角(cone angle) θ对磁尾等离子体片边界层(PSBL)区场向电流发生率的影响. 当时钟角Φ >0时, 磁尾场向电流 的发生率较高, 这表明磁尾场向电流的发生与昏向太阳风条件更为密切; 当 90°<|Φ|<180°时, 场向电流的发生率较高, 这表明 场向电流的发生与南向IMF更为密切. 当锥角θ <30°时(即IMF与 日地连线夹角较小时)场向电流的发生率较低. 而当θ> 30°时, 场向电流在90°<|Φ|<180°的情况下发生率明显增大, 这说明南向IMF情况下, 场向电流发生率明显增大. 但是当|Φ|<90°时 (北向IMF情况下), 尽管θ很大, 场向电流的发生率并未明显增大. 当θ>70°时, 且在140°< < i>Φ<160°的行星 际磁场条件下, 磁尾等离子体片边界层区场向电流的发生率最大. 相似文献
20.
By use of the global PPMLR Magnetohydrodynamics (MHD) model, a serial of quasisteady- state numerical simulations were conducted to examine the modulation property of the interplanetary magnetic field clock angle θ on the solar wind energy input into the magnetosphere. All the simulations can be divided into seven groups according to different criteria of solar wind conditions. For each group, 37 numerical examples are analyzed, with the clock angle varying from 0° to 360° with an interval of 10°, keeping the other solar wind parameters (such as the solar wind number density, velocity, and the magnetic field magnitude) unchanged. As expected, the solar wind energy input into the magnetosphere is modulated by the IMF clock angle. The axisymmetrical bell-shaped curve peaks at the clock angle of 180°. However, the modulation effect remains invariant with varying other solar wind conditions. The function form of such an invariant modulation is found to be sin(θ/2)2.70 + 0.25. 相似文献