首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The propagation of radio signals in the Earth’s atmosphere is dominantly affected by the ionosphere due to its dispersive nature. Global Positioning System (GPS) data provides relevant information that leads to the derivation of total electron content (TEC) which can be considered as the ionosphere’s measure of ionisation. This paper presents part of a feasibility study for the development of a Neural Network (NN) based model for the prediction of South African GPS derived TEC. The South African GPS receiver network is operated and maintained by the Chief Directorate Surveys and Mapping (CDSM) in Cape Town, South Africa. Vertical total electron content (VTEC) was calculated for four GPS receiver stations using the Adjusted Spherical Harmonic (ASHA) model. Factors that influence TEC were then identified and used to derive input parameters for the NN. The well established factors used are seasonal variation, diurnal variation, solar activity and magnetic activity. Comparison of diurnal predicted TEC values from both the NN model and the International Reference Ionosphere (IRI-2001) with GPS TEC revealed that the IRI provides more accurate predictions than the NN model during the spring equinoxes. However, on average the NN model predicts GPS TEC more accurately than the IRI model over the GPS locations considered within South Africa.  相似文献   

2.
The present study reports the analysis of GPS based TEC for our station Surat (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region in India at times close to some earthquake events (M ? 5) during the year 2009 in India and its neighbouring regions. The TEC data used in the study are obtained from GPS Ionospheric Scintillation and TEC Monitoring (GISTM) system. The TEC data has been analysed corresponding to 11 earthquakes in low solar activity period and quiet geomagnetic condition. We found that, out of 11 cases of earthquakes (M > 5) there were seven cases in which enhancement in TEC occurred on earthquake day and in other four cases there was depletion in TEC on earthquake day. The variation in refractivity prior to earthquake was significant for the cases in which the epicentre lied within a distance of 600 km from the receiving station. By looking into the features on temporal enhancement and depletion of TEC a prediction was made 3–2 days prior to an earthquake (on 28 October 2009 in Bhuj – India). The paper includes a brief discussion on the method of potentially identifying an impending earthquake from ionospheric data.  相似文献   

3.
For more than a decade, ionospheric research over South Africa has been carried out using data from ionosondes geographically located at Madimbo (28.38°S, 30.88°E), Grahamstown (33.32°S, 26.50°E), and Louisvale (28.51°S, 21.24°E). The objective has been modelling the bottomside ionospheric characteristics using neural networks. The use of Global Navigation Satellite System (GNSS) data is described as a new technique to monitor the dynamics and variations of the ionosphere over South Africa, with possible future application in high frequency radio communication. For this task, the University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) was applied to compute midday (10:00 UT) GNSS-derived total electron content (GTEC). GTEC values were computed using GNSS data for stations located near ionosondes for the years 2002 and 2005 near solar maximum and minimum, respectively. The GTEC was compared with the midday ionosonde-derived TEC (ITEC) measurements to validate the UNB-IMT results. It was found that the variation trends of GTEC and ITEC over all stations are in good agreement and show a pronounced seasonal variation for the period near solar maximum, with maximum values (∼80 TECU) around autumn and spring equinoxes, and minimum values (∼22 TECU) around winter and summer. Furthermore, the residual ΔTEC = GTEC − ITEC was computed. It was evident that ΔTEC, which is believed to correspond to plasmaspheric electron content, showed a pronounced seasonal variation with maximum values (∼20 TECU) around equinoxes and minimum (∼5 TECU) around winter near solar maximum. The equivalent ionospheric and total slab thicknesses were also computed and comprehensively discussed. The results verified the use of UNB-IMT as one of the tools for future ionospheric TEC research over South Africa.  相似文献   

4.
GALOCAD project “Development of a Galileo Local Component for the nowcasting and forecasting of atmospheric disturbances affecting the integrity of high precision Galileo applications” aims to perform a detailed study on ionospheric small- and medium-scale structures and to assess the influence of these structures on the reliability of Galileo precise positioning applications. GPS-derived TEC (total electron content) is obtained from the Belgium Dense Network (BDN), consisting of 67 permanent GPS stations. An empirical 3-D model is developed for studying these ionospheric structures. The model, named LLT model, described temporal variations of TEC in latitude/longitude frame (46°, 52°)N and (−1°, 11°)E. The spatial variations of TEC are modeled by Tchebishev base functions, while the temporal variations are described by a trigonometric basis. To fit the model to the data, the observed area is divided into bins with (1° × 1°) geographic scale and 6 min on time axis. LLT model is made flexible, with varying number of coefficients along each axis. This allows different degree of smoothing, which is the key element of the present approach. Model runs with higher number of coefficients, capturing in details medium-scale TEC structures are subtracted from results obtained with smaller number of coefficients; the latter represent the background ionosphere. The residual structures are localized and followed as they travel across the observed area. In this way, the size, velocity, and direction of the irregular structures are obtained.  相似文献   

5.
This paper presents small scale (duration ?1 h, ΔTEC ? 1TECU) night-time total electron content (TEC) enhancements observed at the equatorial anomaly region in China, for the first time. The data is from a GPS receiver chain established in 2005 by Institute of Center for Space Science and Applied Research, Chinese Academy of Sciences and a GPS receiver of International GPS Service (IGS), located between Fuzhou (26.1°N, 119.3°E) and Nanning (22.8°N, 108.3°E). Two other GPS observations of IGS taken at higher latitude were also used to investigate the localization of such phenomenon. The characteristics of the night-time TEC enhancement are examined with two case studies. The TEC increases about 1–3TECU, intermittently. While the night-time TEC enhancement mainly occurs at the equatorial anomaly region, it can be observed at middle latitude as well. The spatial size of the enhancement region is less than 5° in longitude. The primary statistical study shows that the TEC enhancement is more often observed in spring and autumn, but rarely in summer. It has no dependence on geomagnetic activity. The enhancement can occur both before and after midnight.  相似文献   

6.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   

7.
An annular solar eclipse occurred over the Indian subcontinent during the afternoon hours of January 15, 2010. This event was unique in the sense that solar activity was minimum and the eclipse period coincides with the peak ionization time at the Indian equatorial and low latitudes. The number of GPS receivers situated along the path of solar eclipse were used to investigate the response of total electron content (TEC) under the influence of this solar eclipse. These GPS receivers are part of the Indian Satellite Based Augmentation System (SBAS) named as ‘GAGAN’ (GPS Aided Geo Augmented Navigation) program. The eight GPS stations located over the wide range of longitudes allows us to differentiate between the various factors induced due to solar eclipse over the equatorial and low latitude ionosphere. The effect of the eclipse was detected in diurnal variations of TEC at all the stations along the eclipse path. The solar eclipse has altered the ionospheric behavior along its path by inducing atmospheric gravity waves, localized counter-electrojet and attenuation of solar radiation intensity. These three factors primarily control the production, loss and transport of plasma over the equatorial and low latitudes. The localized counter-electrojet had inhibited the equatorial ionization anomaly (EIA) in the longitude belt of 72°E–85°E. Thus, there was a negative deviation of the order of 20–40% at the equatorial anomaly stations lying in this ‘inhibited EIA region’. The negative deviation of only 10–20% is observed for the stations lying outside the ‘inhibited EIA region’. The pre-eclipse effect in the form of early morning enhancement of TEC associated with atmospheric gravity waves was also observed during this solar eclipse. More clear and distinctive spatial and temporal variations of TEC were detected along the individual satellite passes. It is also observed that TEC starts responding to the eclipse after 30 min from start of eclipse and the delay of the maximum TEC deviation from normal trend with respect to the maximum phase of the eclipse was close to one hour in the solar eclipse path.  相似文献   

8.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

9.
The modifications induced in the dynamics of the ionosphere by the major Japan earthquake (EQ) of March 11, 2011 (epicenter at 38.322°N, 142.369°E, M = 8.9) in presence of a magnetic storm are examined by mapping latitudinal variations of F-layer ionization density (NmF2) from 22 stations covering the epicenter zone. The changes forced into the Total Electron Content (TEC) by the major EQ in the magnetic storm ambiance are also examined from the GPS data collected at Guwahati (26° 10′ N, 91° 45’ E), situated in the major fault system of East Asia. The contributions of pre-seismic electric field as well as of magnetic storm time electric field in the observed density variations are brought into the ambit of discussion. The influence of lower atmosphere in shaping TEC features during the study case is highlighted. The effects of solar activity on density variations during such complex ambiances are also addressed.  相似文献   

10.
The total electron content (TEC) derived from the global positioning system (GPS) and the F2-layer peak electron density obtained from Digisonde data have been used to study the diurnal, seasonal and solar activity variations of the ionospheric equivalent slab thickness (τ) over three European stations located at Pruhonice (50.0°N, 15.0°E), Ebro (40.8°N, 0.5°E) and El Arenosillo (37.1°N, 353.3°E). The diurnal variation of the τ is characterized by daytime values lower than nighttime ones for all seasons at low solar activity while daytime values larger than nighttime characterizes the diurnal variation for summer at high solar activity. A double peak is noticeable at dusk and at dawn, better expressed for winter at low solar activity. The seasonal variations of τ depend on local time and solar activity, the daytime values of τ increases from winter to summer whereas nighttime values of τ show the opposite. The effect of the solar activity on τ depends on local time and season, there being very sensitive for winter nighttime values of τ. The results of this study are compared with those presented by other authors.  相似文献   

11.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   

12.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

13.
The Total Electron Content (TEC) from four locations in the Indian sector namely, Trivandrum (8.47°N, 76.91°E, Geomag.0.63°S, 0.3° dip), Waltair (17.7° N, 83.3°E, Geomag. 6.4°N, 20° dip), Bhopal (23.28°N, 77.34°E, Geomag.14.26°N, 33.2° dip), and Delhi (28.58°N, 77.21°E, Geomag.19.2°N, 43.4° dip) during a low sunspot year of 2004 are used to study the variabilities of the TEC. The day time TEC values are higher over Waltair and Bhopal compared to those at Trivandrum and Delhi. Considerable day-to-day variations in the diurnal values of TEC are observed at the anomaly crest locations. The observed GPS-TEC has been compared with the IRI-2007 model derived TEC considering three different options (IRI-2001, IRI-2001 corrected and Ne-Quick) available in the model for the topside electron density. The TEC derived with Ne-Quick and IRI-01 corrected options show better agreement with GPS-TEC while the TEC from IRI-01 method shows larger deviations. From the correlation analysis carried out between TEC value at 1300 h LT and solar indices parameters namely sunspot number (SSN), F10.7 and EUV, it is observed that the correlation is more during equinoctial months and less during summer months. The correlation coefficients observed over the anomaly locations, Bhopal and Delhi are lower compared to those at Trivandrum and Waltair.  相似文献   

14.
This paper presents the development of a Total Electron Content (TEC) map for the Nigerian ionosphere. In this work, TEC measurements obtained from the AFRL-SCINDA GPS (Air Force Research Laboratory-Scintillation Network Decision Aid, Global Positioning System) equipment installed at Nsukka (6.87°N, 7.38°E) are used to adapt the International Reference Ionosphere (IRI) model for the Nigerian Ionosphere. The map is being developed as a computer program (implemented in the MATLAB programming language) that shows spatial and temporal representations of TEC for the Nigerian ionosphere. The method is aimed at showing how the IRI model can be used to estimate VTEC over wide areas by incorporating GPS measurements. This method is validated by using GPS VTEC data collected from a station in Ilorin (8.50°N, 4.55°E).  相似文献   

15.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

16.
Results pertaining to the response of the low latitude ionosphere to a major geomagnetic storm that occurred on 24 August 2005 are presented. The dual frequency GPS data have been analyzed to retrieve vertical total electron content at two Indian low latitude stations (IGS stations) Hyderabad (Geographic latitude 17°20′N, Geographic longitude 78°30′E, Geomagnetic latitude 8.65°N) and Bangalore (Geographic latitude 12°58′N, Geographic longitude 77°33′E, Geomagnetic latitude 4.58°N). These results show variation of GPS derived total electron content (TEC) due to geomagnetic storm effect, local low latitude electrodynamics response to penetration of high latitude convection electric field and effect of modified fountain effect on GPS–TEC in low latitude zone.  相似文献   

17.
GPS observations from EUREF permanent GPS network were used to observe the response of TEC (Total Electron Content) to the total solar eclipse on October 3, 2005, under quiet geomagnetic conditions of the daytime ionosphere. The effect of the eclipse was detected in diurnal variations and more distinctly in the variations of TEC along individual satellite passes. The trough-like variations with a gradual decrease and followed by an increase of TEC at the time of the eclipse were observed over a large region. The depression of TEC amounted to 3–4 TECU. The maximum depression was observed over all stations located at the maximum path of the solar eclipse. The delay of a minimum level of TEC with respect to the maximum phase of the eclipse was about 20–30 min.  相似文献   

18.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

19.
Total electron content (TEC) derived from ionosonde data recorded at the station of Korhogo (Lat = 9.33°N, Long = 5.43°W, Dip = 0.67°S) are compared to the International Reference Ionosphere (IRI) model predicted TEC for high (1999) and low (1994) solar activity conditions. The results show that the model represents the diurnal variation of the TEC as well as a solar activity and seasonal dependence. This variation is closer to that of the ionosonde-inferred TEC at high solar activity. However, at low solar activity the IRI overestimates the ionosonde-inferred TEC. The relative deviation ΔTEC is more prominent in the equinoctial seasons during nighttime hours where it is as high as 70%. At daytime hours, the relative deviation is estimated to 0–30%.  相似文献   

20.
Occurrence of Spread F is more or less a daily phenomenon in the equatorial and low latitudinal stations during high to moderate sunspot number years. In this paper efforts have been made to identify possible precursors of Equatorial Spread F (ESF) using the Total Electron Content (TEC) data of seven GAGAN (GPS Aided Geo Augmented Navigation) stations in India during the two equinoxes of moderate sunspot number year 2004. Large Scale Periodic Structures found prior to TEC bite out can be taken as possible precursors to ESF. A threshold value of the peak to peak amplitude of this wave structure is chosen 2.6 TEC unit above which there is a possibility of ESF or TEC bite out with S4 > 0.26.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号