首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 9 毫秒
1.
In this paper, we used the available algorithm for soil moisture estimation over LOPEX05 (the Loess Plateau land surface process Experiment (2005)) area. The available algorithm used ENVISAT/ASAR AP mode VV polarization observational data at a low incidence angle and ground measured soil moistures. The ground measurements were performed in the summer of the 2005 during the LOPEX05 field campaign. The validated results indicate that an average difference between the soil moistures estimated from the microwave remote sensing and ground measurements is less than 0.02 cm3/cm3, with a RMS error of 2.0%, and a maximum less than 0.04 cm3/cm3. The algorithm was applied to the surface soil moisture mapping later. The results show that this algorithm is suitable for monitoring soil moisture information of the agricultural fields over the Chinese Loess Plateau, when ground land cover situation and the resolution of imagery data are taken into account. However, we also find that there are large differences over the steep slope region, the edge of mesa. The results are not acceptable for surface soil moisture estimation in these regions. Thus, the surface soil moisture retrieval in the steep slope region of the Loess Plateau need to be further investigated in the future.  相似文献   

2.
从实际需要出发,根据最小区域原理,提出了一种快速评定直线度误差的数学模型。该方法是通过某一理想直线将被测实际线分成上、下两部分,即可精确找出符合最小条件的三个最优点。  相似文献   

3.
“Clear water” is a scale-dependent concept, so it is more likely to successfully find the “clear water” from images with smaller scale than that with larger scale data. In this study, an optimal spectral relationship of moderate-resolution imaging spectroradiometer (MODIS) 250 m and 1 km resolution data at near-infrared bands (OSRLM) is constructed for converting pseudo “clear water” reflectance at 859 nm to those at 748 and 869 nm. According to scale effects, the satellite-observed pseudo “clear water” reflectance is greater than 5.18%, larger than that derived from OSRLM model. An atmospheric correction model for MODIS 1km data using pseudo “clear water” reflectance of MODIS 250 m data (ACMM) was developed for improving the performance of traditional “clear water” atmospheric correction model (CWAC). The model validation results indicate that ACMM model has a better performance than CWAC model. By comparison, the uncertainty decreases by 19.18% in the use of ACMM model over CWAC model for deriving water-leaving reflectance in Taihu Lake, China. This uncertainty is significantly reduced in water-leaving reflectance estimation due to partial removal of scale effects on “clear water”. These findings imply that satellite-derived aerosol scattering contribution at smaller scale usually has a better performance than that at larger scale.  相似文献   

4.
Monitoring of warm distribution in water is fundamental to understand the performance and functioning of reservoirs and lakes. Surface water temperature is a key parameter in the physics of aquatic systems processes since it is closely related to the energy fluxes through the water–atmosphere interface. Remote sensing applied to water quality studies in inland waterbodies is a powerful tool that can provide additional information difficult to achieve by other means. The combination of good real-time coverage, spatial resolution and free availability of data makes Landsat system a proper alternative. Many papers have developed algorithms to retrieve surface temperature (principally, land surface temperature) from at-sensor and surface emissivity data. The aim of this study is to apply the single-channel generalized method (SCGM) developed by Jiménez-Muñoz and Sobrino (2003) for the estimation of water surface temperature from Landsat 7 ETM+ thermal bands. We consider a constant water emissivity value (0.9885) and we compare the results with radiative transfer classic method (RTM).  相似文献   

5.
An accuracy of geocenter motion estimation is strongly dependent on the geodetic network size and stations distribution over the Earth’s surface. From this point of view DORIS system has an advantage, as its ground network of beacons consists of more than 50 sites, equally distributed over the Earth’s surface. Aiming to study variations of the geocenter movements, the results of DORIS data analysis for the time span 1993.0–2009.0 (inawd06.snx series), performed at the Analysis Centre of the Institute of astronomy of the Russian Academy of Sciences, have been used. DORIS data processing was made with GIPSY/OASIS II software, developed by Jet Propulsion Laboratory and modified for DORIS data processing by Institute Géographique National. Standard deviations of stations coordinates are estimated at the level 0.5–4.0 cm (internal consistency), depending on the number of satellites used in the solution. RMS of estimated components of the DORIS satellites orbits, compared with the solutions of other IDS analysis centres, do not exceed 1–2 cm. Weekly solutions for coordinates have been transformed from free network solutions (inawd06.snx series) to a well defined terrestrial reference frame ITRF2005 with the use of seven parameters of Helmert transformation, which were examined with a view to study variations of the geocenter movements (ina05wd01.geoc time series). In order to estimate linear trend, amplitudes, periods and phases of geocenter variation a method of linear regression was applied. The evaluated amplitudes of annual variations are of the order of 5–7 mm for X and Y components and 27–29 mm for Z component. Semi-annual amplitudes are also noticeable in all components (1–34 mm for X, Y and Z components). Secular trends in the DORIS geocenter coordinates are: −1.2, −0.1 and −0.3 mm/year for X, Y and Z directions respectively.  相似文献   

6.
Tropospheric correction is one of the most important corrections in satellite altimetry measurements. Tropospheric wet and dry path delays have strong dependence on temperature, pressure and humidity. Tropospheric layer has particularly high variability over coastal regions due to humidity, wind and temperature gradients. Depending on the extent of water body and wind conditions over an inland water, Wet Tropospheric Correction (WTC) is within the ranges from a few centimeters to tens of centimeters. Therefore, an extra care is needed to estimate tropospheric corrections on the altimetric measurements over inland waters. This study assesses the role of tropospheric correction on the altimetric measurements over the Urmia Lake in Iran. For this purpose, four types of tropospheric corrections have been used: (i) microwave radiometer (MWR) observations, (ii) tropospheric corrections computed from meteorological models, (iii) GPS observations and (iv) synoptic station data. They have been applied to Jason-2 track no. 133 and SARAL/AltiKa track no. 741 and 356 corresponding to 117–153 and the 23–34 cycles, respectively. In addition, the corresponding measurements of PISTACH and PEACHI, include new retracking method and an innovative wet tropospheric correction, have also been used. Our results show that GPS observation leads to the most accurate tropospheric correction. The results obtained from the PISTACH and PEACHI projects confirm those obtained with the standard SGDR, i.e., the role of GPS in improving the tropospheric corrections. It is inferred that the MWR data from Jason-2 mission is appropriate for the tropospheric corrections, however the SARAL/AltiKa one is not proper because Jason-2 possesses an enhanced WTC near the coast. Furthermore, virtual stations are defined for assessment of the results in terms of time series of Water Level Height (WLH). The results show that GPS tropospheric corrections lead to the most accurate WLH estimation for the selected virtual stations, which improves the accuracy of the obtained WLH time series by about 5%.  相似文献   

7.
We present results for the global elastic parameters h2 and l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two satellites LAGEOS 1 and LAGEOS 2 observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analysed using different approaches. The analysis was done separately for the two satellites and approaches to estimate the two elastic parameters independently and together were performed. We do a sequential analysis and study the stability of the estimates as a function of length of the data set used. The adjusted final values for h2 equal to 0.6151 ± 0.0008 and 0.6152 ± 0.0008, and those for l2 equal to 0.0886 ± 0.0003 and 0.0881 ± 0.0003 for LAGEOS 1 and LAGEOS 2 tracking data are compared to other independently derived estimates. These parameters and their errors achieve stability at about the 24 and 27 month time interval for h2 and l2, respectively.  相似文献   

8.
Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.  相似文献   

9.
In this paper we present results for the global elastic parameters: Love number h2 and Shida number l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two low satellites STELLA (H = 800 km) and STARLETTE (H = 810 km) observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analyzed. The analysis was done separately for the two satellites. We do a sequential analysis and study the stability and convergence of the estimates as a function of length of the data set used.  相似文献   

10.
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.  相似文献   

11.
Information on rice growing areas is important for policymakers to devise agricultural plans. This research explores the monitoring of rice cropping intensity in the upper Mekong Delta, Vietnam (from 2001 to 2007) using time-series MODIS NDVI 250-m data. Data processing includes three steps: (1) noise is filtered from the time-series NDVI data using empirical mode decomposition (EMD); (2) endmembers are extracted from the filtered time-series data and trained in a linear mixture model (LMM) for classification of rice cropping systems; and (3) classification results are verified by comparing them with the ground-truth and statistical data. The results indicate that EMD is a good filter for noise removal from the time-series data. The classification results confirm the validity of LMM, giving an overall accuracy of 90.1% and a Kappa coefficient of 0.7. The lowest producer and user accuracies were associated with single crop rain-fed rice class due to the mixed pixel problems. A strong yearly correlation at the district level was revealed in the MODIS-derived areas (R2 ? 0.9). Investigation of interannual changes in rice cropping intensity from 2001 to 2007 showed a remarkable conversion from double to triple crop irrigated rice from 2001 to 2003, especially in the Thoai Son and Phu Tan districts. A big conversion from triple crop rice back to double crop rice cultivation was also observed in Phu Tan from 2005 to 2006. These changes were verified by visual interpretation of Landsat images and examination of NDVI profiles.  相似文献   

12.
Ionospheric response to tropical cyclones (TCs) was estimated experimentally on the example of three powerful cyclones – KATRINA (23–31 August 2005), RITA (18–26 September 2005), and WILMA (15–25 October 2005). These TCs were active near the USA Atlantic coast. Investigation was based on Total Electron Content (TEC) data from the international network of two-frequency ground-based GPS receivers and the NCEP/NCAR Reanalysis data. We studied the spatial–temporal dynamics of wave TEC disturbances over two periods of ranges (02–20 min and 20–60 min). To select the ionospheric disturbances which were most likely to be associated with the cyclones, maps of TEC disturbances were compared with those of meteorological parameters.  相似文献   

13.
The Dst index is a key parameter which characterises the disturbance of the geomagnetic field in magnetic storms. Modelling of the Dst index is thus very important for the analysis of the geomagnetic field. A data-based modelling approach, aimed at obtaining efficient models from limited input–output observational data, provides a powerful tool for analysing and forecasting geomagnetic activities including the prediction of the Dst index. In this study, the process of the Dst index is treated to be a structure-unknown system, where the solar wind parameter (VBs) and the solar wind dynamic pressure (P) are the system inputs, and the Dst index is the system output. A novel multiscale RBF (MSRBF) network is introduced to represent such a two-input and single-output system, where the Dst index is related to the solar wind parameter and the dynamic pressure, via a hybrid network model consisting of two submodels: a linear part that reflects the linear relationship between the output and the inputs, and a nonlinear part that captures the effect of the interacting contribution of past observations of the inputs and the output, on the current output. The proposed MSRBF network can easily be converted into a linear-in-the-parameters form and the training of the linear network model can easily be implemented using a forward orthogonal regression (FOR) algorithm. One advantage of the new MSRBF network, compared with traditional single scale RBF networks, is that the new network is more flexible for describing complex nonlinear dynamical systems.  相似文献   

14.
Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.  相似文献   

15.
The effects of galactic and solar cosmic rays (CR) in the middle atmosphere are considered in this work. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper. For this purpose the ionization losses (dE/dh) according to the Bohr–Bethe–Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. The integrand in q(h) gives the possibility for application of adequate numerical methods – such as Romberg method or Gauss quadrature, for the solution of the mathematical problem. On this way the process of interaction of cosmic ray particles with the upper, middle and lower atmosphere will be described much more realistically. Computations for cosmic ray ionization in the middle atmosphere are made. The full CR composition is taken into account: protons, Helium (α-particles), light L, medium M, heavy H and very heavy VH group of nuclei.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号