首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation results of a diffuse aurora (DA) and stable auroral red (SAR) arc dynamics based on spectrophotometric observations at the Yakutsk meridian (199°E geomagnetic longitude) are presented. The relationship of an equatorward extension of DA in the 557.7 nm emission to a substorm growth phase during the magnetospheric convection intensification after the turn of IMF BZ to the south is shown. The formation of SAR arc during the substorm expansion phase is investigated. The association of SAR arc dynamics with the development of asymmetric ring current (substorm injection) during the main phase of a storm is analyzed. It is shown how the pulsating precipitations of energetic ring current particles develop in the outer plasmasphere based on photometric observations.  相似文献   

2.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

3.
The diurnal variation of the mid-latitude upper thermosphere zonal winds during equinoxes has been studied using data recently generated from CHAMP measurements from 2002 to 2004 using an iterative algorithm. The wind data was separated into two geomagnetic activity levels, representing high geomagnetic activity level (Ap > 8) and low geomagnetic activity level (Ap ? 8). The data were further separated into two solar flux levels; with F10.7 > 140 for high and F10.7 ? 140 for low. Geomagnetic activity is a correlator just as significant as solar activity. The response of mid-latitude thermospheric zonal winds to increases in geomagnetic disturbances and solar flux is evident. With increase in geomagnetic activity, midday to midnight winds are generally less eastward and generally more westward after the about midnight transitions. The results show that east west transitions generally occurred about midnight hours for all the situations analyzed. The west to east transition occurs from 1400–1500 MLT. Enhanced westward averaged zonal wind speeds going above 150 ms−1 are observed in the north hemisphere mid-latitude about sunrise hours (∼0700–1100 MLT). Nighttime winds in the north hemisphere are in good agreement with previous single station ground observations over Millstone Hill. Improved ground observations and multi satellite observations from space will greatly improve temporal coverage of the Earth’s thermosphere.  相似文献   

4.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   

5.
The polarization pattern of ULF pulsations (f ≈ 1–100 mHz) at Terra Nova Bay (Antarctica, CGM λ ∼ 80°) has been determined for the entire 2003, soon after the solar maximum. A comparison with the results of previous investigations, conducted at the same station close to the solar minimum (1994–96), allows to focus common elements and major differences among different frequency bands which persist through the entire solar cycle. Basically, between f ∼ 1.5 and 5 mHz, the day can be divided into four sectors with alternate polarizations. The local time and latitudinal dependence of the observed pattern can be tentatively interpreted in terms of a latitude of resonant field lines reaching λ ∼ 80° in the noon sector; on the other hand, resonance effects of lower latitude field lines can be clearly identified also far from the noon meridian when the station moves into the deep polar cap. Moreover, in the morning sector the resonance region would extend to lower latitudes than in the evening sector. The proposed profile of the resonant region can interpret also the results obtained at other cusp/auroral stations and appears consistent with that one inferred in the northern hemisphere at smaller latitudes. The resonance region progressively shifts toward lower latitude with increasing frequency; correspondingly, the four-sector pattern progressively disappears at TNB. Above f ∼ 20 mHz, the experimental observations might suggest an additional contribution from Sunward propagating waves, possibly via the magnetotail lobes.  相似文献   

6.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

7.
The structure of standing Alfvén waves with large azimuthal wave numbers (m ? 1) is studied in a dipole model of the magnetosphere with rotating plasma. In the direction across magnetic shells the structure of such waves is determined by their dispersion associated with curvature of geomagnetic field lines and corresponds to the travelling wave localized between toroidal and poloidal resonant surfaces. In projection into the ionosphere (along geomagnetic field lines) this structure is similar to the structure of a discrete auroral arc. The azimuthal structure of an auroral arc is similar to azimuthal structure of Alfvén waves with m ∼ 100. Possible interaction mechanisms between the Alfvén waves and energetic electron fluxes forming auroral arcs are discussed.  相似文献   

8.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

9.
The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes in 1996 and 2000 at Grahamstown (33.32 °S, 26.50 °E) and Madimbo (22.38 °S, 30.88 °E) respectively. This study is intended to quantify the probability of occurrence of F region disturbances associated with SF over South Africa. A study was conducted using data for 8 years (2001–2008) over Madimbo (with a time resolution of 30 min) and Grahamstown (with a variable time resolution of 15 and 30 min). In this study, SF has been classified into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The SF events were identified by manually identifying ionograms showing SF and tabulating them according to type for further statistical analysis. The results show that the diurnal pattern of SF peaks strongly between 01:00 and 02:00 local time, LT (LT = UT + 2 h), where UT is the universal time. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown in 2001 and 2005, except for RSF which had peaks during autumn and spring in 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing solar activity, with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study, SF was evident in ∼0.03% and ∼0.06% of the available ionograms at Madimbo and Grahamstown respectively during the 8 years.  相似文献   

10.
The periodic variation of TEC data at Xiamen station (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) at crest of equatorial anomaly in China from 1997 to 2004 is analyzed. The characteristic of TEC association with solar activity and geomagnetic activity are also analyzed. The method of continuous wavelet, cross wavelet and wavelet coherence transform methods have been used. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Several remarkable components including 128–256 days, 256–512 days and 512–1024 days exist in TEC variations. The TEC data at Xiamen station is in anti-phase with geomagnetic Dst index in semiannual time-scale, but this response only exists during high solar activity. Diurnal variation of TEC is studied for different seasons. Some features like the semiannual anomaly and winter anomaly in TEC have been reported.  相似文献   

11.
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT.  相似文献   

12.
The first results of the comparison of subauroral luminosity dynamics in 557,7 and 630,0 nm emission with simultaneous measurements of the ionospheric drift in the F2 region with a digisonde DPS-4 at the Yakutsk meridian (CGMC: 55–60N, 200°E) at Kp = 2–6 are presented. It is shown from the analysis of individual events that during the magnetospheric convection intensification after the turn of the IMF Bz – component to the south the equatorward extension of diffuse aurora takes place. At the same time the westward ionospheric drift velocity increases both in the diffuse aurora region and much equatorward of it due to the occurrence of the northward polarization electric field. We suppose that the generation of polarization field can be associated with the development of the region 2 FAC during the intensification of magnetospheric convection. The comparison of ground-based observations with measurements of the plasma drift aboard the DMSP-F15 satellite has been carried out.  相似文献   

13.
The amplitude scintillations data recorded at 244 MHz from the geostationary satellite, FLEETSAT (73°E) at a low latitude station, Waltair (17.7°N, 83.3°E) during the ten year period of high to low solar activity from 2001 to 2010 is considered to study the occurrence characteristics of the VHF scintillations. A close association between the intense scintillations on VHF signals during pre-midnight hours, associated with range type of spread-F on ionograms and a relatively weak and slow fading scintillations during post-midnight hours associated with frequency type of spread-F is observed during the relatively high sunspot years from 2001 to 2004, whereas during the low sunspot years from 2005 to 2010 the scintillation activity as well as spread-F activity are found to be minimum. During both the high and low sunspot years, it is observed that the maximum scintillation activity occurs during equinoctial months followed by winter with the minimum occurrence during summer months. The annual mean percentage occurrence of scintillations is found to be clearly associated with the variations in the annual mean sunspot number. The nocturnal variations in the occurrence of scintillations show the onset of scintillation activity starts from 19:00 h LT with maximum of occurrence around 21:00 h LT. A clear semiannual variation in the occurrence of scintillations is observed during pre-midnight hours with two peaks in equinoctial months of March/April and September/October. The number of scintillation patches observed is found to be more during pre-midnight hours compared to those during post-midnight hours. The most probable scintillation patch duration lies around 30 min. Further, it is also found that the number of scintillation patches with durations of 60 min and more decreases with the increase in the patch duration. It is also observed in general that the scintillation activity is inhibited during geomagnetic disturbed days.  相似文献   

14.
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one.  相似文献   

15.
The electron density and temperature distribution of the equatorial and low latitude ionosphere in the Indian sector has been investigated by simultaneously solving the continuity, momentum and energy balance equations of ion and electron flux along geomagnetic field lines from the Northern to the Southern hemisphere. Model algorithm is presented and results are compared with the electron density and electron temperature measured in situ by Indian SROSS C2 satellite at an altitude of ∼500 km within 31°S–34°N and 75 ± 10°E that covers the Indian sector during a period of low solar activity. Equatorial Ionization Anomaly (EIA) observed in electron density, morning and afternoon enhancements, equatorial trough in electron temperature have been simulated by the model within reasonable limits of accuracy besides reproducing other normal diurnal features of density and temperature.  相似文献   

16.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

17.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

18.
Westward ionospheric convective flows around midnight are frequently observed at mid-latitudes. They can be generated by so-called disturbance dynamo mechanisms working mainly in the mid-latitudes. To understand the influence of disturbance dynamo effects in the mid-latitudes, we studied the latitudinal distribution of westward flows in association with several kinds of geomagnetic disturbances using the SuperDARN Hokkaido radar. This radar creates high temporal resolution (1 s to 2 min), two-dimensional observations measuring the line-of-sight velocities of ionospheric plasma irregularities, which can be regarded as line-of-sight velocities of ionospheric convection in the mid-latitude region from 40° to 50°. This region could not be monitored using preexisting SuperDARN radars. In this study, we used ionospheric echo data obtained by the SuperDARN Hokkaido radar over 5 years (December 2006 to November 2011). We identified westward flows around midnight at about 40° to 55° geomagnetic latitude. Additionally, the data showed that the westward flow around midnight intensified under high geomagnetic activity (high Kp). This suggests that the disturbance dynamo could affect the mid-latitude ionospheric convection. We performed Superposed Epoch Analysis (SEA) to study the influences from the geomagnetic disturbances on mid-latitude ionospheric convection. We found no obvious influence during major storms (minimum Dst below −60 nT). SEA was also used to study the temporal and latitudinal dependence on the influences from substorms. From analysis of 36 events of AL-defined substorms, we saw that the influence of substorms lasted from 5 to 20 h after the onset between 44° and 53° geomagnetic latitude. The westward flow at mid-latitude grew to a maximum at 12 h after the geomagnetic substorm onset. This is consistent with the results of past numerical simulation studies of the disturbance dynamo effects.  相似文献   

19.
We present the results of nightglow observation of the atomic oxygen 557.7 nm line emission in the solar cycle 23. We use the experimental data obtained at Geophysical observatory near Irkutsk (52°N, 103°E), Russia, for the 1997–2006 period. The 557.7 nm emission observations data are compared with atmospheric and solar parameters. We note a difference in correlation coefficients between the 557.7 nm emission intensity and the solar activity indices in different phases of the solar cycle. Airglow observation results are compared with the observational data obtained by other authors.  相似文献   

20.
Using Irkutsk digisonde data obtained in 2003–2011, a morphological analysis of the G condition occurrence has been made. The G condition was found to occur during daylight hours in summer; in winter, it is extremely rare, and its appearance is associated with intense magnetic storms. In the years of moderate solar activity, the G condition is most frequently registered at Kp ? 4, in the forenoon. During low solar activity, it can be observed under quiet geomagnetic conditions; in most cases, local time of its appearance shifts to afternoon hours. The highest percentage of the G condition occurrence (7.7–6.4%) was recorded in June and July 2008 when the levels of solar and geomagnetic activity were abnormally low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号