首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of near plasma sheet electrons and ions (E 0.1–12.4 keV), ring current protons (E i 41–133 keV), and energetic electrons from the Earth's radiation belts (E e 97–1010 keV) is considered using the data from the Gorizont-34and Gorizont-35geosynchronous satellites from March 11–25, 1992. Peculiarities of this period are a long (more than 4 days) interval of the northward interplanetary magnetic field (B z> 0) and a high-speed stream of the solar wind with an enhanced particle density. The SC and compression of the magnetosphere to the geosynchronous orbit (GMC) preceded this interval. Under quiet and moderately disturbed geomagnetic conditions and under a prolonged northward interplanetary magnetic field, we observed a significant decrease of fluxes and softening of spectra of the electron component of plasma in the energy ranges of 0.1–12.4 keV and 97–1010 keV, and of the ion component of plasma at energies of 0.1–4 keV, while the intensity of 5–12.4 keV ion fluxes increases by about one order of magnitude. The peculiarities of distributions of energetic particle fluxes observed in the period under consideration can be associated with significant variations of the convection conditions and a decreased or fully suppressed injection of energetic electrons into the geosynchronous orbit region.  相似文献   

2.
Analyzing the results of space and ground-based experiments carried out in the Baikov Institute of Metallurgy and Materials Science to study the processes of the melting and crystallization of two-phase InSb–InBi alloys of an indium–antimony–bismuth (In–Sb– Bi) triple system, we have demonstrated the gravitational sensitivity of the InSb-based solution– melt. It manifests itself as a certain asymmetry of the boundary of the dissolution of the InSb ingot by the InSb–InBi melt and heterogeneity of the melt along this boundary depending on the magnitude and direction of the gravity force acceleration gin the range (1–10–3–10–5)g 0, where g 0is the acceleration of the gravity force on Earth. For the first time, it is established in the experiments under analysis that the homogeneity of melts of a complex composition with components of various densities can be reached only at magnitudes of quasistationary (residual) microaccelerations g< 10–6 g 0.  相似文献   

3.
Some results of studying the electrons with energies of tens to hundreds of keV at the low and near- equatorial geomagnetic latitudes by using the instruments Sprut-V and Ryabina-2 onboard the Mirspace station in 1991 are presented. It is found that at L< 1.2 the enhanced electron fluxes are sporadically detected, being localized within three longitudinal intervals, 180° W–0°–15° E, 90°– 120° E, and 160° E–180°–135° W. The most intense electron fluxes are observed at the lower edge of the near-equatorial boundary of the inner radiation belt on longitudes of the South Atlantic Anomaly between 14 and 20 h MLT. The occurrence of electron bursts does not depend on the geomagnetic disturbance level. A hardening of the electron spectra is observed near the geomagnetic equator. At L< 1.1, the more energetic particles are located closer to the geomagnetic equator. The results are compared with the data on the low-frequency waves and fields at low and near-equatorial latitudes obtained by the Ariel-4and San Marco Dsatellites, as well as by the spacecraft and ground-based observations of the thunderstorm global distribution. The thunderstorms are considered as a possible source of electron production near the geomagnetic equator.  相似文献   

4.
This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1–500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise Barmin Design Bureau of General Machine Building (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0–1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1–500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1–3) × 10–3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1–7) × 10–6 gin the steady-state regime in the zone of technological activity.  相似文献   

5.
Shock–acoustic waves generated during rocket launches and earthquakes are investigated by a method developed earlier for processing data from a global network of receivers of the GPS navigation system. Disturbances of the total electron content in the ionosphere accompanying the launches of the Proton, Soyuz, and Space Shuttle space vehicles from the Baikonur cosmodrome and Kennedy Space Center launch site in 1998–2000, as well as the earthquakes in Turkey on August 17 and November 12, 1999, were analyzed. It was shown that, regardless of the source type, the impulsive disturbance has the character of an N-wave with a period of 200–360 s and an amplitude exceeding background fluctuations under moderate geomagnetic conditions by a factor of 2–5 as a minimum. The elevation angle of the disturbance wave vector varies from 25° to 65°, and the phase velocity (900–1200 m/s) approaches the speed of sound at heights of the ionospheric F-region maximum. The source location corresponds to a segment of the booster trajectories at a distance of no less than 500–1000 km from the start position and to a flight altitude of no less than 100 km. In the case of earthquakes the source location approximately coincides with the epicenter.  相似文献   

6.
The value of the radial gradient of low-energy (0.5–2 MeV) protons in the heliosphere at distances of 20–80 AU in the periods of solar activity minima in 1985–1987 and 1994–1997 was estimated using the data of the Voyager-1 and Voyager-2 spacecraft (s/c). Preliminary results on the dependence of the radial gradient on the distance were obtained for protons of these energies. The value of the radial gradient varies from –3% (AU)–1 to –1% (AU)–1 at distances from the Sun of 20–60 AU, reaching +0.7% (AU)–1 at maximum considered distances (80 AU). The sign reversal of the proton radial gradient at a distance of 60–70 AU is interpreted as the appearance of a new component: up to the point of inversion there are mainly particles of the solar origin and/or accelerated in the inner heliosphere, while after the reversal of the gradients sign the fluxes of particles prevail whose source is located far from the Sun (maybe in the vicinity of the heliosphere boundary in the region of existence of the termination shock).Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 1, 2005, pp. 3–8.Original Russian Text Copyright © 2005 by Logachev, Zeldovich, Surova.  相似文献   

7.
Using the new technology of global GPS detection of ionospheric disturbances (GLOBDET), it is found that a sharp increase of the time derivative of the magnetic field strength during magnetic storms is accompanied by a simultaneous decrease of the mid-latitude total electron content (TEC) over the entire dayside of the globe. The corresponding negative correlation coefficient is no less than 0.8, and the delay relative to the sudden commencement of magnetic storm is about 3–10 min. The effect is especially clearly pronounced for magnetic storms with sudden commencements (SSC). The analysis is carried out for a set of 90 to 300 GPS stations for 10 days (January 6 and April 23, 1998; April 6, June 8, July 13, 14, and 15, 2000; March 31, April 4 and 11, 2001) with various levels of geomagnetic activity (D st and K p varied from –6 to –295 nT and from 0 to 9, respectively). The amplitude of the response in the total electron content for the events considered was 0.1–0.4 × 1016 m–2 (which is a deviation of 0.2–2.6% from the TEC background value). The velocity of the disturbance motion from the dayside to the nightside was about 10–20 km/s. The results obtained agree with the data of ionospheric parameter measurements conducted earlier by methods with high temporal resolution.  相似文献   

8.
The subject of space education is attracting increasing attention, but there are diverging views as to how it should be approached, as can be seen from the following two reports of Education Remote Sensing '92, a conference held in Cardiff, Wales, 28–30 June 1992.  相似文献   

9.
Based on satellite data, we present the results of modeling the spatial and energy distributions of integral fluxes of He nuclei (α particles) with E > 1, 2, 4, and 7 MeV at L = 1.1–6.6 in a broad range of B/B 0 (E is the kinetic energy of particles, L is the drift shell parameter, and B/B 0 is the magnetic field ratio). Some ways of practically applying the model are considered. The results of calculation of α-particle fluxes for a circular orbit with a height of 300 km and an inclination of 50° are presented.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 243–247.Original Russian Text Copyright © 2005 by Getselev, Sosnovets, Kovtyukh, Dmitriev, Podzolko, Vlasova, Reizman.  相似文献   

10.
The electromagnetic radio-frequency emission of the inner region of the Earth's plasmasphere discovered recently by the GEOTAIL satellite [4] and referred to as the kilometric continuum was observed by the INTERBALL-1 satellite (1995–2000) in the 100–500 kHz band in the AKR-X experiment. During a period of low solar activity (1995–1997), this continuum was found leaving the inner plasmasphere at geocentric distances of 2–4R E as isolated pencil-like (1°–6°) beams located in the magnetic equator plane. During a time of high solar activity (1999–2000), the occurrence of the emission was extremely rare (it was observed only at a considerable fall of this activity). If detected, at the same geocentric distances (2–4R E) the continuum demonstrated a strongly variable and perturbed character, as well as a considerably larger extension of the beam over the geomagnetic latitude (10°–20° and more). In addition, quasi-periodic (QP) signals, similar to the observed QP emissions of Jupiter, were sometimes detected in this period. The probable nature of the observed features of the kilometric continuum is briefly discussed.  相似文献   

11.
During the period October 29–31, 2003, geosynchronous magnetopause crossings (GMC) have been identified based on the magnetic data of the GOES series spacecraft and plasma data of the LANL series spacecraft. It is shown that most of the time the size of the dayside magnetosphere was highly decreased under the effect of very high pressure associated with high velocities and densities of the solar wind plasma, as well as high negative values of the Bz component of the interplanetary magnetic field (IMF). For tens of hours the subsolar magnetopause was deep inside the geosynchronous orbit. During the main phase and at the maximum of the strong geomagnetic storms that occurred in the period under consideration, the dayside magnetosphere was characterized by a strong dawn-dusk asymmetry, so that its size in the postnoon sector considerably exceeded the size in the pre-noon sector. The geomagnetic disturbances in the morning on October 30 and 31, 2003 were accompanied by global magnetospheric pulsations with periods of 5–10 min and high amplitude (up to 0.8 RE).Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 574–584.Original Russian Text Copyright © 2004 by Dmitriev, Suvorova.  相似文献   

12.
Within the framework of the Space Weather program, 25-year data sets for solar X-ray observations, measurements of plasma and magnetic field parameters in the solar wind, and D st index variations are analyzed to reveal the factors that have had the greatest influence on the development of magnetospheric storms. The correlation between solar flares and magnetic storms practically does not exceed a level of correlation for random processes. In particular, no relation was found between the importance of solar flares and the minimum of the D st index for storms that could be connected with considered flares by their time delay. The coronal mass ejections (CME; data on these phenomena cover a small part of the interval) result in storms with D st < –60 nT only in half of the cases. The most geoeffective interplanetary phenomena are the magnetic clouds (MC), which many believe to be interplanetary manifestations of CMEs, and compressions in the region of interaction of slow and fast streams in the solar wind (the so-called Corotating Interaction Region, CIR). They correspond to about two-thirds of all observed magnetic storms. For storms with –100 < D st < –60 nT, the frequencies of storms from MC and CIR being approximately equal. For strong storms with D st < – 100 nT, the fraction of storms from MC is considerably higher. The problems of reliable prediction of geomagnetic disturbances from observations of the Sun and conditions in interplanetary space are discussed.  相似文献   

13.
Dovbnya  B. V.  Potapov  A. S. 《Cosmic Research》2004,42(4):349-353
The sonographic analysis of records of ultralow-frequency emissions recorded by the induction magnetometer at the Mirnyi observatory (Antarctica) in 1981–1985 has revealed the presence of a special class of signals in the frequency band 0.25–5 Hz having a characteristic dispersion reminiscent of the dynamic spectra of LHR-whistlers observed in the VLF band. The ULF whistlers are observed, as a rule, at morning and evening hours of local time at moderate values of the K p-index (0 < K p < 4). The analysis of the frequency–time behavior of observed signals shows that the canalized propagation of short broadband pulses as magnetosonic waves in the layered medium, for example, in the magnetospheric current sheet can serve as a possible cause of the dispersion. Such sporadic phenomena on the magnetopause as microreconnections or FTE-events may be sources of these pulses.  相似文献   

14.
The results of comparison of the model profiles of density, obtained by means of the CDPDM model, with the experimental data of the ISEE-1 satellite for the years 1977–1983 are presented. The hypothesis on the validity of the mirror mapping of the convection boundary relative to the dawn–dusk direction is verified. An attempt to improve the CDPDM model for the dayside is made.  相似文献   

15.
Modulation of the VLF emission and riometric absorption by Pc5 geomagnetic pulsations is studied in the period of strong geomagnetic disturbances on October 30–31, 2003. Some conclusions about the regime of pitch-angular diffusion into the loss cone are made. The better coincidence of VLF emission modulation with geomagnetic pulsations in other longitude sectors is explained by the global character of excitation of the pulsations and by damping of their amplitudes at the meridian of observation of the VLF emission, which is associated with intensification of auroral electrojets.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 632–639.Original Russian Text Copyright © 2004 by Solovyev, Mullayarov, Baishev, Barkova, Samsonov.  相似文献   

16.
Mineev  Yu. V. 《Cosmic Research》2002,40(6):554-558
Fluxes and differential spectra of 0.04–2.0 MeV electrons at low altitudes in the Earth's magnetosphere are considered in comparison with the model spectra AE-8 MAX and AE-8 MIN. Possible causes of the discrepancy between the observational and model spectra are discussed. The coefficients of radial diffusion at various L-shells are estimated for the maximum of solar activity (using the Interkosmos-19 data) and for the minimum of solar activity (using the Kosmos-1686 data) and are derived from the model AE-8. A quantitative evaluation of the electron yield from radial diffusion at low L shells is derived. Ionization losses, Coulomb angle scattering, and resonant wave–particle interaction are considered as the loss mechanisms. A calculation of these losses at the low L-shells is given. The electron distribution at low L-shells is best fitted by a combination of dissipative terms from different models: Coulomb scattering dominates at the lower L-shells (L = 1.2–1.4) and the resonant wave–particle interaction controls the radiation belt maximum and the gap (L = 1.4–2.0).  相似文献   

17.
In this paper we continue the analysis of the influence of solar and interplanetary events on magnetospheric storms that was started in [1]. Two data sets are additionally analyzed in the present study: solar flares of importance M5 and greater in 1976–2000 and halo CMEs observed by the SOHO spacecraft during the period of 1996–2000. It is demonstrated that the statistical characteristics of the new set of flares and of that analyzed before in [1] differ little, while the geoeffectiveness of the halo CMEs turned out to be much less than that of the previously published CMEs.  相似文献   

18.
The orbiting solar telescope on Salyut-4 (F = 2,5 m, d = 250 mm) produces images of the Sun on the entrance slit of a stigmatic two-grating spectrograph (R1 = 1 m, N1 = 1200 lines/mm; R2 = 0.5 m, N2 = 2400 lines/mm, dispersion 16 Å/mm, spectral resolution 0,3 Å). The automatic system keeps the observed solar features on the slit of the spectrograph with an accuracy of 3–4 arc sec. The far UV-spectra (970–1400 Å) of solar flares, brightenings, flocculi and prominences were photographed and fresh coatings of mirrors were made during the flight.  相似文献   

19.
One of the important astrophysical problems is the determination of the abundance of helium isotopes 3He and 4He in different regions of the Universe, because this abundance can reflect its history by pointing to the intensity of various possible processes of the creation and decay of light elements. This paper describes the method and results of the determination (for the first time performed by a direct method) of the helium isotopic abundance in the local interstellar medium surrounding the Solar system. The experiment was carried out on the manned Mir space station by long-term space exposure of samples of metal foil with their subsequent recovery to the Earth and detailed laboratory mass-spectrometric analysis. As a result, we succeeded in obtaining an estimation of the 4He concentration (about 7.5 × 10–3 cm–3) and the isotopic ratio 3He/4He (about1.7 × 10–4) for the local interstellar medium.  相似文献   

20.
Using the data of the Russian KORONAS-F satellite and American GOES spacecraft on solar cosmic ray fluxes associated with powerful events which occurred on the Sun at the end of October - the beginning of November, 2003, calculations of ionization of high-latitude (70° N) atmosphere were carried out. The calculations have shown that the maximum values of ionization for the chosen latitude lie in the range of 50–70 km. The largest ionization was caused by the flare on November 28, 2003. Based on a numerical photochemical simulation it is shown that, as a result of intensification of catalytic cycles with participation of ozone-destroying NO and OH, the concentration of ozone decreased by 30% at ionization maximum altitudes.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 653–662.Original Russian Text Copyright © 2004 by Krivolutsky, Kuminov, Vyushkova, Kuznetsov, Myagkova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号