首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 671 毫秒
1.
高负荷压气机叶栅分离结构及其等离子体流动控制   总被引:8,自引:0,他引:8  
赵小虎  吴云  李应红  赵勤 《航空学报》2012,33(2):208-219
 为揭示高负荷压气机叶栅内部流动损失的产生机理和分布规律以及等离子体气动激励的作用机制,利用拓扑分析和数值计算方法,从计算模型的建立与验证、基准流场的分离结构和等离子体流动控制3个方面展开研究;对总压损失系数分布、拓扑结构和表面流谱与空间流线分布以及旋涡结构进行分析,并开展了激励方式的优化分析.结果表明:随着攻角的增大,固壁面拓扑结构增加了3对奇点,吸力面流向激励改变了固壁面拓扑结构.当攻角为2°时,在吸力面拓扑结构中产生了一对奇点,打断了角区分离线,并引入了一条回流再附线.叶栅流道内部有5个主要涡系,尾缘径向对涡促进流体的展向流动,并成为吸力面倒流的主要组成部分;角涡是一个独立的涡系,其强度和尺度不受等离子体气动激励的影响.吸力面流向激励可以改善叶中流场,但对角区流动作用很小;端壁横向激励可以降低角区流动损失,对叶中流场作用有限;吸力面流向与端壁横向组合激励在整个叶高范围内均可以显著抑制流动分离;端壁横向流动对角区流动分离结构的影响大于吸力面附面层的分离.吸力面流向激励的优化明显降低,而端壁横向激励和组合激励的优化保持并增强了等离子体流动的控制效果.  相似文献   

2.
王学德  赵小虎  王路成 《推进技术》2013,34(10):1321-1329
为揭示叶栅等离子体流动控制的影响规律与作用机理,对等离子体气动激励前后高负荷压气机叶栅内部流动和拓扑结构进行了对比研究。结果表明:等离子体气动激励抑制叶栅流动分离的作用效果最明显的区域位于总压损失区域与主流区域的边界上;不同等离子体气动激励布局,对固壁面拓扑结构以及奇点总数的影响规律不同;吸力面流向激励通过增强附面层流体抵抗逆压梯度的能力,可以改善叶栅中间叶高流动特性;端壁横向激励通过抑制横向流动,抑制角区流动分离能力较强,并改变叶片展向的负荷分布;组合激励结合了吸力面流向激励和端壁横向激励的作用优势,因而提高叶栅气动性能、降低流动损失的效果最好。   相似文献   

3.
通过数值模拟,分别针对扩压叶栅的设计工况与角区失速工况进行叶身/端壁融合与吸力面优化造型设计,分析其流场结构与性能的变化,并探究两种优化造型对压气机性能改善的机理。优化结果表明:在设计工况下,优化造型吸力面凹陷,使得吸力面附面层厚度变薄,最大端壁融合位置靠近尾缘,角区低能流体在压力梯度的作用下转移并减少,分离结构得到明显控制,损失降低;在角区失速工况下,优化造型吸力面凸起,最大端壁融合位置靠近前缘,使得前缘分离结构显著减弱,当流体在进入吸力面前缘时提前附着,前缘分离区减小甚至消失,损失降低。根据两种造型流场结构特点与控制机理,可构造出在多工况下具有显著作用的叶身-端壁融合造型。  相似文献   

4.
在轴流压气机等离子体扩稳研究中,针对单转子压气机流动控制的研究较多,而针对单级环境下静叶流动控制的研究却很少.采用静叶轮毂轴向等离子体激励方式,通过数值模拟方法研究单级环境下静叶流场特性,揭示轴流压气机静叶等离子体流动控制扩稳机理.结果表明:等离子体激励器的轴向位置对单级轴流压气机的扩稳效果影响显著,越靠近叶片前缘,扩稳效果越好;布置在静叶通道后半部的等离子体激励器无法提高压气机的稳定性,而在静叶前缘施加轴向等离子体激励时,近轮毂区气流被诱导加速,主流的轴向速度提高,有效抑制了静叶近轮毂区吸力面的流动分离,静叶近轮毂区的堵塞减小,使得单级轴流压气机的稳定性提高.  相似文献   

5.
等离子体激励抑制翼型失速分离的实验研究   总被引:12,自引:2,他引:10  
进行了低速、低雷诺数条件下等离子体激励抑制NACA0015翼型失速分离的实验研究,研究了等离子体激励电压、激励电极数目和激励位置对流动分离抑制效果的影响.在翼型吸力面敷设不对称电极布局的等离子体激励器.在来流速度为4.27m/s,雷诺数为4.96×104的情况下,未施加等离子体激励时,从攻角为9°起翼型吸力面发生显著的前缘流动分离;施加等离子体激励后,流动分离在攻角小于26°的情况下均能很好地重附到翼型吸力面表面.实验表明,流动分离越严重,对等离子体激励的强度要求也越高,等离子体激励的电压和电极组数也必须相应增大;给定的流动分离状态下,等离子体激励的电压和电极组数存在一个阈值;等离子体激励的最佳位置在流动分离起始点的前缘;雷诺数增大后,流动分离更难抑制.  相似文献   

6.
叶栅等离子体流动控制布局优化和影响规律   总被引:2,自引:1,他引:1  
为提高流动控制能力,基于高负荷压气机叶栅的流场特性和等离子体气动激励特性,对等离子体流动控制的激励布局进行优化,通过选取典型激励布局,实验揭示了不同因素对等离子体气动激励抑制叶栅流动分离的影响.结果表明:吸力面激励布局中,靠近前缘流向激励的作用效果强于展向激励和尾缘激励,沿流向分布多组电极的激励效果最佳;端壁激励布局中,横向激励的作用效果明显强于流向激励;组合激励布局中,基于端壁横向激励和吸力面流向激励的组合布局的激励效果最佳.等离子体气动激励的作用效果随着激励电压的增大而增强,随着攻角的增大其作用效果先增强后变弱;变定常激励为非定常激励,通过耦合流动的不稳定性,可以提高等离子体气动激励流动控制效果.   相似文献   

7.
轴流压气机角区分离的研究进展   总被引:1,自引:0,他引:1  
角区分离是一种常发生于轴流压气机"吸力面-端壁"角区的三维分离现象,该现象以及随之产生的流场堵塞和流场损失会对压气机的稳定工作和效率造成不良影响,严重时会发展为"角区失速"。随着现代轴流压气机单级负荷的提升,角区分离所产生的负面影响日益突出,严重阻碍了高负荷压气机的发展,各种主动、被动流动控制方法也因此被广泛应用于角区分离的流动控制。首先,从角区分离对轴流压气机性能的影响、角区分离的流场特征和角区失速的判别准则3个方面对轴流压气机角区分离的流动机理研究进行了回顾,详细讨论了角区分离的影响因素、角区分离的流动拓扑分析以及角区失速的定义与判别方法。其次,对三维叶片设计、翼刀与凹槽、旋涡发生器、非轴对称端壁造型、射流式旋涡发生器、等离子体气动激励以及附面层抽吸与附面层射流7类流动控制方法的研究进展进行了回顾,重点探讨了这些流动控制方法在抑制角区分离方面的应用,并给出了这些流动控制方法的对角区分离的作用机制。最后,对角区分离领域的研究现状进行了简要地总结,指出了现有角区分离的机理研究和流动控制研究所存在的不足,并对该领域未来的发展进行了展望。  相似文献   

8.
为了更好地控制压气机静叶角区分离,结合翼刀和涡流发生器的流动控制思想,提出一种在叶栅通道前缘端壁设置小叶片的新型流动控制手段。以某高负荷轴流压气机叶栅为研究对象,基于数值方法深入分析了不同周向位置和安装角的小叶片对流场的影响。结果表明:小叶片存在提升叶栅气动性能的最佳周向位置和安装角范围。在近失速工况附近,小叶片可减缓角区分离,提高全叶高的扩压能力,但会不可避免地增加中间叶高位置处的流动分离和气动载荷;小叶片可减少角区分离损失和尾迹损失,提高各流向位置处的静压系数。小叶片能阻碍马蹄涡压力面分支发展,减缓叶栅前缘附近的横向二次流动。从小叶片叶顶泄漏的诱导涡可将马蹄涡压力面分支推向流向,带走端壁和角区附近的低能流体,从而削弱通道涡强度。  相似文献   

9.
端壁抽吸位置对大转角扩压叶栅流场及负荷的影响   总被引:5,自引:3,他引:2  
实验研究了低速条件下在端壁近吸力面处进行附面层吸除对某大转角扩压叶栅性能的影响.对叶栅出口截面参数和叶片型面静压进行了测量,并在叶片表面及端壁进行了墨迹流动显示.结果表明,端壁抽吸主要影响了吸力面/端壁角区,重新分配叶片根部负荷.在角区未发生分离的位置开始抽吸可有效推迟叶栅内的角区分离,降低损失,改善叶栅端区流动;而在角区已经发生分离的弦向位置开槽吸气则引起了局部回流,恶化了流场,增加了低能流体的掺混和气动损失.  相似文献   

10.
叶根开槽叶栅对角区分离的控制   总被引:1,自引:0,他引:1  
吸力面/端壁角区的分离是轴流压气机流场中固有的现象。本文采取在叶根处开槽的方法,利用压力梯度从叶片压力面向叶片吸力面引入一股射流增加分离区的能量,从而减缓分离。通过数值模拟的方法分析了在不同攻角下槽的位置、大小和形状对扩压叶栅性能的影响,计算结果初步表明,在非设计工况下适当位置、大小和形状的槽可以有效地减小角区分离。  相似文献   

11.
单转子轴流压气机不同状态下进出口三维时均流场   总被引:2,自引:1,他引:1  
用圆锥四孔高频压力探针测量了单转子轴流压气机不同流量状态下, 转子进出口三维时均流场。结果表明, 压气机转子进口流动沿周向呈现较强的周期性变化, 尤其在近失速状态, 叶片压力面侧总压和静压高, 吸力面侧总压和静压低, 而前缘附近轴向速度低、相对气流角大。   相似文献   

12.
进行了等离子体气动激励抑制低速压气机叶栅角区流动分离的数值仿真研究,并进行了实验验证.小攻角情况下,叶片吸力面角区流动分离导致显著的尾迹总压损失.来流速度为50 m/s(雷诺数为223 000)时,等离子体气动激励可以有效的抑制角区流动分离,降低总压损失.激励电压、频率分别为10 kV和22 kHz时,50%叶高处的尾迹压力分布基本不变,60%和70%叶高处的最大总压损失分别减小了13.83%和10.74%.增加激励电极组数或激励电压,可以增强抑制效果.   相似文献   

13.
附面层抽吸对叶栅角区分离流动的控制研究   总被引:3,自引:3,他引:0       下载免费PDF全文
梁田  刘波  茅晓晨 《推进技术》2019,40(9):1972-1981
为研究附面层抽吸对叶栅角区分离流动的控制效果和机理,以高负荷轴流压气机叶栅为研究对象,基于数值方法深入分析了不同抽吸方案对叶栅角区流场的影响以及叶栅攻角特性随抽吸流量组合的变化规律。结果表明:不同抽吸方案对叶片通道中的分离流动的控制机理不同,进而会影响叶片负荷及扩压能力;将吸力面抽吸与端壁附面层抽吸结合起来的组合抽吸方案基本消除了位于叶栅吸力面的附面层分离和角区分离,叶栅叶型损失系数显著降低,在5°攻角下,当吸力面抽吸量为1.88%,端壁抽吸量为0.82%时,损失系数相较于原叶栅降低约63.8%;并且进一步研究发现各抽吸槽的抽吸流量均存在其最佳临界值;在进行组合抽吸时,应针对不同攻角工况,在其相应的临界值范围内选择合理的抽吸流量,以达到用较小的吸气量实现对叶栅分离流动的控制。  相似文献   

14.
间隙变化对压气机静叶叶栅气动性能的影响   总被引:1,自引:0,他引:1  
王子楠  耿少娟  张宏武 《航空学报》2016,37(11):3304-3316
利用压气机平面叶栅试验,在大负攻角工况、设计工况和角区失速工况下,研究间隙变化对叶栅气动性能的影响,并分析内部流动变化与气动性能变化的关联。试验结果表明,不同工况下间隙变化对流场结构的影响不同,因而对叶栅性能的影响规律也不同。大负攻角工况下,不同间隙叶栅内在压力面前缘附近都存在一对由端壁向叶展中部发展的分离涡,间隙增大可以使叶栅总损失近似线性减小,并使间隙侧气流折转能力略微提升。设计工况下,无间隙侧吸力面角区存在轻微的角区分离,小间隙(0.2%展长)的引入首先会加剧间隙侧角区分离,当间隙进一步增大时,角区分离消失并形成泄漏涡结构。叶栅总损失随间隙增大呈先增大后减小再增加的趋势,角区分离的消除有助于提高间隙侧气流折转能力。角区失速工况下,间隙的引入可以削弱并移除间隙侧角区失速结构,从而使叶栅总损失下降,并在0.5%展长间隙时达到最小值,同时间隙侧气流折转能力得到增强。当间隙进一步增大时,叶栅损失变化不大。在间隙变化过程中,两侧端部流动结构产生相互影响,使两侧流场性能变化呈相反趋势。通过对比全工况范围内的气动性能,叶栅在选取0.5%展长间隙时整体性能最优。  相似文献   

15.
马宏伟  蒋浩康 《航空动力学报》1997,12(2):167-171,220
在低速大尺寸压气机试验台上,借助旋转四坐标全电动探针位移机构,用锥形五孔压力探针分别测量压气机设计状态和近失速状态转子通道内尖区的三维平均流场,揭示压气机转子通道内尖部的流动结构及其变化  相似文献   

16.
单级轴流压气机叶端区二次流动的研究   总被引:1,自引:0,他引:1  
为揭示某单级压气机非设计转速下影响效率和稳定性的关键因素,采用实验和数值模拟相结合的方法,系统地研究了该压气机动、静叶通道内的二次流动随工况(即叶片负荷)的变化规律.对于转子,大流量工况叶端区的二次流主要以泄漏流/泄漏涡和轮毂角区分离为主,而到了峰值效率和近失速工况,整个叶高基元的过度扩压导致的叶片失速抑制了轮毂角区失速的发生.静叶叶尖端区的二次流动虽然具有三维性,但到了近失速工况它依然没有发展成为角区失速.静叶叶根的泄漏流动虽然对端壁附面层的低能流体向轮毂吸力面角区的汇聚起到了一定的抑制作用,但它对角区失速的控制效果却受到压气机不同流量工况的影响.近失速工况叶根泄漏流动抑制角区失速的能力不足是导致压气机效率下降的主要因素,而转子叶尖的二次流动造成的对整个叶尖通道的阻塞是限制压气机稳定性的关键因素.   相似文献   

17.
为了研究静叶轮毂间隙对压气机角区失速的控制作用,以某1.5级轴流压气机为研究对象,采用三维数值模拟方法研究静叶轮毂整体间隙和部分间隙对压气机低工况点和设计点气动性能的影响。结果表明:整体间隙通过产生泄漏流削弱起始于轮毂表面终止于静叶吸力面的“龙卷风”旋涡的能量源,达到了控制角区失速提高压气机低工况点性能的目的,但间隙产生的泄漏损失会降低设计点性能。而部分间隙明显优于整体间隙,部分间隙的位置越靠近尾缘,低工况点性能提高的幅度越大,同时对设计点的损害越小。TAI2方案的低工况点流量增加了0.89kg/s,效率提高了1.25%,而设计点效率不降低。另一方面,只有当部分间隙增大到一定尺寸后间隙泄漏流才足以抑制角区失速团。   相似文献   

18.
压气机不同状态下转子出口三维紊流流场   总被引:3,自引:1,他引:2  
马宏伟  蒋浩康 《航空动力学报》1997,12(3):268-272,331
用单斜热丝、圆柱单孔高频压力探针等手段,详细测量了单级压气机转子出口的三维紊流流场,揭示压气机在不同流量状态下转子出口的流动结构和紊流特性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号