首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 906 毫秒
1.
燃烧条件下凝胶自燃推进剂雾化特性试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
夏益志  王勇  洪流  杨伟东 《推进技术》2020,41(2):398-405
为了研究凝胶自燃推进剂的雾化特性及敏感因素,在单互击式喷嘴矩形燃烧室内进行了凝胶一甲基肼/四氧化二氮(MMH/NTO)喷雾燃烧过程可视化试验,采用光源后置消光法湮灭火焰自然辐射发光,采用彩色高速摄影获取了燃烧条件下的高质量雾场阴影图像,通过图像处理,有效提取了雾场的雾化锥角、破碎长度、液丝直径及液丝运动速度,分析了撞击角、射流速度和动量比的影响。结果表明,凝胶MMH/NTO稳态燃烧时可观察到液膜、贯穿视场的液丝和红棕色NO_2气体,推进剂混合燃烧不充分;撞击角从75°增大到105°,凝胶MMH/NTO撞击后的破碎长度、液丝直径减小,视场内可视红棕色NO_2气体变少,撞击角为105°时,推进剂会附着在喷注面上,从而影响液膜横向铺展,雾化锥角反而最小,建议撞击角选取90°。燃料射流速度从23m/s增大到45m/s,凝胶MMH/NTO撞击后的雾化锥角及液丝运动速度增大,破碎长度及液丝直径减小,雾化模式发生改变。动量比从1.04增大到1.52,凝胶MMH/NTO撞击后的雾化锥角及液丝运动速度增大,视场内红棕色NO_2气体变少。故一定量程内增加撞击角、射流速度、动量比有助于凝胶MMH/NTO推进剂混合燃烧。  相似文献   

2.
射流自由长度对凝胶推进剂撞击雾化影响的实验   总被引:1,自引:0,他引:1  
为研究射流自由长度对凝胶推进剂撞击雾化的影响,建立了撞击雾化实验台,制备了煤油凝胶和水基模拟液,测试了雾化装置的喷射系数及模拟液的黏性和稳定性。分析了3种射流速度不同射流自由长度条件下的凝胶撞击雾化特性,观测了射流和撞击喷雾图像。测量了液膜破碎长度、雾化液滴粒径分布和相应的SMD(索太尔平均直径)值。研究结果表明:低速时,随着射流自由长度增大,撞击液膜的喷雾形态会发生较大变化,而高速条件下,雾化形态则基本一致。3种射流速度下,破碎长度在45~9mm之间,并随射流自由长度逐渐减小。液滴分布服从Rosin Rammler规律,并具有较高的拟合精度。均匀度指数均在3~4之间,并随射流自由长度逐渐降低,粒径均匀度降低;较高射流速度下,SMD随自由长度逐渐增大。低射流速度时,SMD随射流长度先减小后增大,射流自由长度存在一个最优值,在设定研究条件下其值为25/3。因此,在设计撞击喷嘴时,根据射流速度选取适当的自由长度值可以获得更好的雾化效果。   相似文献   

3.
申力鑫  邢菲  秦腊  苏昊 《航空学报》2021,42(12):625267-625267
为了全面加深对锥形液膜一次破碎机理的认识,对双层锥形液膜的雾化过程进行了数值模拟,重点研究了压降和同轴旋转空气对双层液膜宏观形态、液膜破碎模式、液膜破碎长度和喷雾锥角等液膜一次破碎特性的影响。数值计算的喷雾场宏观形态与试验结果接近,喷雾锥角和索特尔平均直径的计算最大误差分别为4.9%、7.4%。研究表明:同轴旋转空气参与雾化会改变喷雾场的整体形态;增大压降和空气速度会改变液膜的破碎模式和主导表面波模式;双层液膜的合并会在液膜表面产生剧烈的表面波动,同时会略微增大液膜的喷雾锥角;液膜的破碎长度会随着压降和同轴旋转空气轴向速度的增大而减小。该研究有助于进一步研究双层液膜一次破碎的机理,从而指导对双路离心式喷嘴的雾化认识。  相似文献   

4.
施浙杭  邬二龙  姚锋  刘昌国 《推进技术》2021,42(12):2652-2666
为了进一步认识凝胶推进剂雾化过程,促进凝胶发动机的设计和优化,综述了射流撞击式、离心式、气泡式以及燃烧条件下凝胶推进剂雾化特性的研究进展。综述结果表明,凝胶推进剂雾化性能明显差于牛顿流体推进剂,凝胶液膜尺寸显著增大,液丝较难破碎为小粒径液滴;射流撞击式喷嘴对凝胶推进剂的雾化效果优于离心式喷嘴;随着射流雷诺数和韦伯数增大,撞击式凝胶液膜的雾化模式依次为边缘闭合模式、边缘开放模式、无边缘射线模式、液丝分离模式和充分发展模式;采用锥形结构、减小喷嘴出口长径比、方形和椭圆形喷嘴出口皆有利于凝胶液膜破裂,且增大喷注压力、撞击角、温度、室压和减小撞击距离均能改善液膜雾化效果。燃烧条件下MMH/NTO凝胶推进剂撞击液膜破裂雾化机制在宏观上与冷模条件下凝胶推进剂模拟液撞击液膜较好地吻合。此外,对凝胶推进剂雾化特性的进一步研究工作提出了建议。  相似文献   

5.
为了实现对不同工况下液体中心式同轴离心喷嘴液膜破碎特性的数值模拟研究,采用网格自适应加密技术、耦合的Level-set和Volume of Fluid(CLSVOF)方法对气液界面进行捕捉,利用改进延迟分离涡模拟(IDDES)方法模拟湍流。分析了液膜的破碎模式、喷雾锥角、破碎长度以及流场特性。通过观察分析得到:随着气液相互作用的增强,液膜破碎模式依次经历主导表面波发展导致的液膜破碎、Rayleigh-Taylor(R-T)和Kelvin-Helmholtz(K-H)不稳定性引起的液膜破碎,以及气动破碎模式。随着气液动量通量比(Momentum Flux Ratio,MFR)的增大,喷雾锥角和破碎长度逐渐减小且呈渐进趋势,发现无量纲喷雾锥角和破碎长度均与MFR-A成正比例关系。相同液膜破碎模式而不同工况时,主要流场特征一致。  相似文献   

6.
为了实现对不同工况下液体中心式同轴离心喷嘴液膜破碎特性的数值模拟研究,采用网格自适应加密技术、耦合的Level-set和Volume of Fluid(CLSVOF)方法对气液界面进行捕捉,利用改进延迟分离涡模拟(IDDES)方法模拟湍流。分析了液膜的破碎模式、喷雾锥角、破碎长度以及流场特性。通过观察分析得到:随着气液相互作用的增强,液膜破碎模式依次经历主导表面波发展导致的液膜破碎、Rayleigh-Taylor(R-T)和Kelvin-Helmholtz(K-H)不稳定性引起的液膜破碎,以及气动破碎模式。随着气液动量通量比(Momentum Flux Ratio,MFR)的增大,喷雾锥角和破碎长度逐渐减小且呈渐进趋势,发现无量纲喷雾锥角和破碎长度均与MFR-A成正比例关系。相同液膜破碎模式而不同工况时,主要流场特征一致。  相似文献   

7.
采用气液两相流大涡模拟方法,结合多相流体积分数方法,对双组元推力器喷注器喷嘴内流及雾化过程进行了模拟,研究了出口直径及喷嘴出口长度等结构参数对雾化特性的影响规律。研究结果表明:对于外路喷注器,增大喷嘴外径使射流破碎长度及SMD减小,有利于射流的雾化,同时喷雾具有更好的周向分散特性;减小喷嘴出口长度使连续液丝明显缩短,喷雾锥角增大,喷雾雾化得到增强。对于内路喷注器,出口直径越小则连续液丝越长,喷雾SMD值越大,雾化程度越弱;减小喷嘴的出口长度使连续液丝长度缩短,SMD减小,射流雾化得到增强。  相似文献   

8.
两股湍流射流撞击雾化过程的数值研究   总被引:4,自引:4,他引:0       下载免费PDF全文
刘昌波  雷凡培  周立新 《推进技术》2014,35(12):1669-1678
采用新提出的雾化过程仿真算法,对两股湍流射流撞击雾化过程进行了数值研究,重点关注了撞击角和动量比的影响。为精细地模拟湍流对雾化的影响,采用了大涡模拟。对雾场瞬态和统计结果的分析表明,喷雾角随着两股射流撞击角的减小而减小,但液膜的破碎长度反而增加;动量比主要影响雾场的偏斜程度,动量比由1.0增大到2.25时,喷雾偏斜角由0°增大到约23°。仿真结果与试验结果吻合较好,表明新算法能够较好地反映两股湍流射流的雾化过程。  相似文献   

9.
离心式喷嘴液膜破碎过程实验   总被引:11,自引:9,他引:2  
为了研究离心式喷嘴出口液膜破碎以及雾化锥角变化规律,对直径2.5~6 mm之间6个不同直径、不同几何特性参数的离心式喷嘴运用高速阴影设备进行实验,喷注压降从0.1~3 MPa,每次实验间隔0.2 MPa。通过实验,得到液膜破碎长度、液膜锥角随喷注压降、喷孔直径以及几何特性参数的变化规律。随着喷注压降的增加,液膜破碎长度减小,液膜锥角增大,该种类型喷嘴破碎长度在40 mm左右,液膜锥角不大于60°;随着几何特性参数A值增加,同一喷注压降下的液膜破碎长度增大,液膜锥角增加;将液膜锥角实验结果与Abromvich,Lefebvre等理论公式进行了比较,在常用的喷嘴特性参数范围内,液膜锥角的变化趋势与理论公式相吻合,但实验值远小于公式计算值。  相似文献   

10.
王尧  李国岫  虞育松  丁佳伟  张涛 《推进技术》2017,38(4):903-908, 917
为了研究同轴旋转射流喷雾锥角的变化规律,设计了喷雾实验装置和同轴旋流喷注器。采用水和乙醇分别代替氧化剂和燃料,利用高速摄影系统对喷雾过程进行观测,分析不同喷射压力下喷雾锥角的变化规律。实验结果表明:内外两路同时喷雾时,喷雾锥角随着外路喷射压力的增加而增大,锥角值从81.6°增加至102.3°;但内路喷射压力增加后,喷雾锥角反而减小,从102.5°降低到94.8°。这个变化规律与单路旋流喷嘴的情况有所不同。将实验结果与通过动量定理推导出的理论公式进行对比,发现喷射压力小于0.2MPa时,实验值与理论公式吻合较好;随着喷射压力的增加,喷孔内液体的湍动能对喷雾锥角的影响逐渐增加,导致实验值与理论公式的偏差逐渐增大,喷射压力增加至0.6MPa时,实验值比理论值大10°左右。实验还研究了内路出口缩进对喷雾锥角的影响,结果显示随内路出口缩进长度的增加,喷雾锥角呈现先减小后增大的变化趋势。  相似文献   

11.
剪切稀化非牛顿射流撞击液膜破碎直接数值模拟   总被引:1,自引:1,他引:0  
朱呈祥  吴猛  陈荣钱  尤延铖 《航空学报》2018,39(5):121982-121982
液态射流撞击是液体火箭推进系统中广泛采用的一种燃料雾化方法,其破碎特征直接影响燃料最终的掺混及燃烧效率。采用直接数值模拟(DNS)工具,研究了低雷诺数(Rel=41)和中等韦伯数(Wel=163)条件下剪切稀化非牛顿射流撞击液膜破碎的问题,着重分析了对角液膜的三维结构、破碎特征和非牛顿特性等。研究结果表明:在所研究的射流参数下,该非牛顿撞击液膜破碎属于Open Rim类别,破碎过程具有三维特性并伴随液丝与边缘的融合、液丝向液滴的转变等时域流动特征。液体的总表面积随时间不断增长,但单位表面积随液膜破碎的发生而下降,液膜扩张半角随时间逐渐增加并趋于恒定值43°,而后部液膜的长度几乎不随时间发生变化。此外,撞击液膜表现出明显的剪切稀化特性,液体内部最低黏性系数仅为零剪切黏性系数的1/5。  相似文献   

12.
低韦伯数非牛顿射流撞击破碎直接数值模拟   总被引:1,自引:0,他引:1  
非牛顿射流的撞击破碎在液体火箭推进系统中被广泛用于燃料的喷注雾化,然而人们对其破碎物理机制却知之甚少。本文将采用基于液体体积法的直接数值模拟(DNS)工具,研究夹角为90°的2个等直径低韦伯数射流撞击现象,并分析二者形成的单一对角射流特征及其破碎机理。研究结果表明,撞击形成的单一对角射流直径较原射流直径大1.66倍,并在头部形成液滴诱导破碎的发生。除了头部破碎,在对角射流的发展过程中还观察到一类液柱破碎,表现为射流表面不稳定波不断发展形成新的弯曲波破碎,并产生卫星液滴及液滴的融合。伴随两股射流撞击的发生,气液两相交界面的面积也不断减小,同时,射流内部的黏性也不断变化,在本文的低雷诺数和低韦伯数条件下,流体内部黏性系数变化超过10%。  相似文献   

13.
采用超声波悬浮液滴的方式,选取直径分别为1.0mm、1.5mm和2.0mm的乙醇液滴为研究对象,在韦伯数We=15~90的范围内,对其在脉冲气流中的破碎特性进行了实验研究。利用高速摄像机拍摄破碎现象,分析了液滴的破碎模式与运动特性。研究结果表明,随着韦伯数的增加,液滴先后产生袋状破碎、袋状/蕊心破碎、羽状/液膜稀释破碎。三种不同的破碎模式本质上都是袋状破碎——边缘袋状破碎与核心袋状破碎,低We数下主要为核心袋状破碎,高We数下主要为边缘袋状破碎。We数越大,破碎形成的袋直径越小,数量越多,破碎越剧烈。初始直径增大会使液滴转变破碎模式的临界We数增大。脉冲气流中乙醇液滴的迎风面运动遵循匀加速规律,其无量纲位移以We-1/2的比例缩小后是无量纲时间的简单二次函数。液滴在横向的扩散过程分为两个阶段,一个是惯性控制阶段,另一个是毛细效应阶段。  相似文献   

14.
IntroductionBreakup and atomization of roundliquidjetshad been widely used in internal combustion en-gines,gas turbines,and liquid rocket engines.Recently,with the development of scramjet en-gines and the deepening of fuel atomization re-search,it attract…  相似文献   

15.
低Weber数射流撞击雾化的数学模型   总被引:3,自引:1,他引:2  
石少平  庄逢辰 《航空动力学报》1994,9(3):285-288,334
通过分析低Weber数无粘射流撞击形成液膜雾化的特征, 由质量守恒和动量守恒, 并借鉴前人的理论和实验结果, 推导出Taylor心形波作用下计算液膜厚度和形状的近似解析式, 数值计算结果与文献所给实验数据基本吻合一致。结合矩形喷孔形成的扇形液膜的破碎理论, 进一步计算了不同撞击角下雾化形成液滴尺寸的大小及分布。   相似文献   

16.
粘性气体中粘性液体射流分裂与雾化机理研究   总被引:6,自引:0,他引:6  
采用线性稳定性分析的方法对粘性气体中的粘性液体射流的分裂与雾化机理进行了分析,数值计算表明:液体射流分裂与雾化过程中存在一临界气体韦伯数We2c=1,We2<We2c对应的是射流分裂过程,We2>We2c对应的是射流雾化过程,射流分裂过程和雾化过程的机理有所不同.当We2<1时,We2对射流分裂过程具有稳定性的作用;当We2>1时,We2对射流雾化过程起着不稳定性的作用.液体Reynolds数Re1在整个射流过程中始终起着不稳定性的作用,气体Reynolds数Re2的作用却相反.气液密度比Q,即气动力在整个射流分裂与雾化过程中始终起着不稳定性的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号