首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
窦唯  刘占生 《火箭推进》2012,38(4):17-25
为获得转子振动特性,针对液体火箭发动机涡轮泵转子系统建立了其在密封流体激振作用下的弯扭耦合动力学模型。通过数值仿真和试验研究了涡轮泵转子系统弯扭耦合振动的动力学特性,结果显示在密封流体激励作用下弯扭耦合振动的非线性特性显著。还研究了偏心距对涡轮泵转子系统弯扭耦合振动的影响。本研究可为液体火箭发动机涡轮泵转子的结构设计、诊断与维护提供可靠信息。  相似文献   

2.
航空航天发动机中,涡轮工作环境恶劣,承受流动传热耦合作用下强烈的热冲击,其结构强度问题十分突出。分别采用气动仿真和气热耦合仿真对某多级涡轮结构开展气动和强度性能仿真研究,提取相应的热边界条件进行涡轮盘结构强度有限元计算。结果表明:两种分析方法得到的涡轮气动性能十分接近,但涡轮盘表面的温度分布存在较大差异,计算得到的径向变形偏差达16%,等效应力偏差达50~100 MPa,气热耦合仿真结果更为可靠。  相似文献   

3.
针对某液体火箭发动机部分进气自由叶片涡轮盘多次试车后在叶片型线根部和背弧出现疲劳裂纹的问题,采用三维弹塑性有限元法,考虑部分进气产生的Kick效应,计算了涡轮盘的静强度,得到了部分进气作用下叶片的静弯应力;考虑多场环境引起的预应力影响,计算了涡轮盘的模态,获得了涡轮盘固有频率和主振型;采用全环模型,计算了部分进气作用下涡轮盘的动态响应和动应力。在裂纹原因分析的基础上,对涡轮盘进行改型,在叶片顶部增加了围带,并对带围带涡轮盘进行了计算分析。结果表明:加围带后,涡轮盘叶片气流静应力下降了50■;气流力作用下的叶片动弯应力下降了65■;叶片之间以及叶片和轮盘之间耦合作用明显增强,涡轮盘固有振动模式发生转变,避免了叶片在共振频率附近发生的强迫振动;改型后显著降低了涡轮盘静应力及动弯应力,降低了出现裂纹的风险。  相似文献   

4.
根据某型液体火箭发动机总体性能及结构要求,采用一维方法设计了部分进气、圆锥形喷嘴、单级超声速冲击式涡轮。基于求解雷诺平均的Navier-Stokes方程组,对涡轮内部流场进行全三维粘性定常仿真计算及分析,并研究了不同转子叶栅通道面积变化方式对涡轮性能的影响。结果表明:部分进气涡轮内部流动流线不规则、存在较多漩涡流动、转子叶栅激波复杂、叶片通道内分离较为严重;喷嘴通道和转子叶栅通道内总压损失均在20%以上,其中转子叶栅通道损失更大;不同转子叶栅通道面积的变化方式对涡轮总体性能影响基本不大,但收缩-扩张型通道可降低流速,缓解气流分离,对降低叶片温差应力有一定帮助。  相似文献   

5.
液体火箭发动机涡轮泵中,环形小间隙密封引入的刚度、阻尼系数会随转子运行转速发生变化,体现为弱耦合效应,进而对转子系统的动力学特性产生影响。为获得密封耦合效应对涡轮泵转子系统动力学特性的影响,基于有限单元法及矩阵运算方法推导了转子—密封耦合系统动力学方程,提出了考虑密封动力学系数随涡轮泵运行工况变化的耦合计算方法,获得了...  相似文献   

6.
为满足膨胀循环液体火箭发动机高性能和高可靠的研制要求,在氢涡轮泵方案的选择上采用了径流式氢涡轮方案。通过一维热力和三维结构设计,初步验证了径流式氢涡轮应用可行性。借助于CFD分析软件,完成了该涡轮设计工况全三维粘性数值模拟,证明性能满足指标要求。通过强度优化设计和轴向力平衡两方面研究,突破了涡轮泵应用的两大技术难点。结合该涡轮介质试验及发动机热试车考核情况,得出径流式涡轮能够应用于膨胀循环发动机氢涡轮泵的结论。  相似文献   

7.
火箭发动机旋转试验台可在地面模拟火箭发动机飞行过程中的高速自旋环境,通过对发动机旋转工作状态下的控制和监测,为旋转发动机流场及内弹道研究提供试验数据。为模拟发动机旋转时点火飞行的受力工况,试验台不仅需驱动发动机一起做高速旋转运动,保证发动机在轴向上具有自由度以测试推力,还需承载发动机点火时产生的巨大冲击振动。为此,试验台采用卧式布局,底座通过预埋件与混泥土基建固连,提高试验台抗倾覆能力;驱动系统采用大功率电机,通过传输轴间接驱动发动机达到高转速;转子外部增设防护罩,防护转子的高速旋转;在工程设计中,通过对核心部件进行结构优化和质量控制,降低转子转动惯量和提高结构强度,并使其满足固体火箭发动机进行旋转的同时具有轴向自由度。最后,对转子进行了仿真和动平衡分析。结果表明,试验台结构上要求核心部件为轴对称结构,表面无凸起,在离心力作用下,套筒半径越小、壁厚越大、长度越短,结构强度越好,并且壁厚对变形量的影响较为显著,经过优化设计核心部件,可保证装置稳定运行。  相似文献   

8.
涡轮泵是液体火箭发动机的动力核心部件.涡轮泵工作时叶轮等组件随转子系统高速运转,其松脱转速是影响涡轮泵转子系统动力稳定性的主要因素.而确保涡轮或叶轮内径与转轴外径之间的工艺配合尺寸设计的合理性,就能够将松脱转速控制在安全范围内.以某涡轮泵为研究对象,分析了高速运转时涡轮、叶轮过盈量大小对转子运行状态的影响规律.同时,给出了最小松脱转速下设计过盈量的大小,并在理论分析的基础上进行了试验验证.  相似文献   

9.
利用商业计算流体力学软件Numeca对某冲击式涡轮在不同工况下的内流场进行了定常流动数值模拟,分析了涡轮的气动参数、流量及效率等的变化规律。分析表明,冲击式涡轮内部流场非常复杂,涡轮静子出口马赫数较高,相应的激波损失较大,从而涡轮转子的激波损失也较大,造成气流在靠近尾缘部分分离严重,这是冲击式涡轮追求低出口速度低反力度造成的。计算表明,模拟计算结果与试验结果较为吻合。  相似文献   

10.
依据液体火箭发动机涡轮泵原理,建立了两级局部进气冲击式压力级涡轮的设计方法。该方法可以根据涡轮进出口边界条件、转速和结构尺寸等参数,完成涡轮的一维设计,并输出叶型的几何数据和流动性能参数,再结合三维数值模拟进行验证。按照涡轮总体设计要求,完成了某小流量高压比涡轮的原始设计,根据三维数值模拟的结果,对原始设计的涡轮叶型进行了优化,涡轮效率提高了2%。在全周结构上进行了三维数值模拟验证,优化后的两级局部进气冲击式压力级涡轮满足涡轮总体设计要求。  相似文献   

11.
开展了飞行高度20 km、速度Ma 3条件下,空气涡轮火箭发动机(ATR)风车状态数值仿真研究。根据ATR发动机结构方案,建立了三维计算模型,并以压气机转子扭矩为0作为风车状态判据,使用计算流体动力学方法,计算获得了不同给定转速下ATR发动机三维流场结果。研究发现,冷态条件下随着给定压气机转子转速的不断升高,发动机通流能力逐渐增强,发动机入口气流静压逐渐降低,速度逐渐增加。同时,确认了在飞行高度20 km、速度Ma 3条件下,ATR发动机风车转速约为6 900 r/min,内阻约2 170 N。此时,发动机进出口总压损失约61%。其中,压气机流道进出口总压损失达到了32.6%。  相似文献   

12.
由于液体火箭发动机涡轮泵运行状态的好坏直接影响发动机的性能和可靠性,所以对其进行超速疲劳试验是检验涡轮泵转子系统高速旋转时稳定性的可靠保证。低温氢转子转速高、动能大,实际工作中又受低温环境、振动等多种复杂因素的影响,给涡轮转子的结构强度和稳定性带来很大挑战。为确保涡轮泵产品运行的稳定性,研究其高速离心时的变形特性对保证涡轮泵产品的结构强度和可靠性具有重要意义。建立了涡轮等部件的有限元模型,研究应力分布和形变特性,在理论研究的基础上开展了试验研究,验证了产品设计的可靠性,为发动机的可靠运转提供保证。  相似文献   

13.
针对某型号发动机喷管扩张段壳体结构,建立了高精度三维扩张段热结构FEM模型,计算了喷管工作时扩张段壳体结构在承受高温、高压以及作动器外载的联合作用下,结构的应变及位移分布规律,并与全尺寸发动机喷管热联试的试验结果作对比。结果表明:热结构仿真计算与试验结果吻合较好,其中关键承载部位应变最大误差小于15%,验证了热结构仿真模型准确性及精度,可以用于工程上扩张段壳体热结构强度校核。在此基础上,以环/母向筋条数量为设计变量,采用First-order优化方法对喷管扩张段壳体结构进行减重优化设计,在满足强度和刚度要求的前提下实现了目标结构约30. 8%的有效减重。以上计算结果对于固体火箭发动机喷管扩张段壳体结构设计优化,准确预估结构安全裕度有着一定的参考价值。  相似文献   

14.
空气涡轮火箭发动机内外涵气流掺混研究   总被引:4,自引:0,他引:4  
通过无化学反应、均匀进气条件下肼单组元空气涡轮火箭发动机混流燃烧室内流场的数值计算,得到了流向涡与正交涡系产生、衰减演变过程及其对内外涵气流掺混效率的影响规律。结果表明,大尺度阵列二次环流诱导形成的流向涡对内外涵气流掺混起主导作用,大波瓣穿透率的斜切波瓣混流器的综合性能较优。结合热试车结果,分析了包括波瓣混流器在内的两类掺混方案的强化掺混效率。分析表明,非均匀进气条件对小尺寸空气涡轮火箭发动机掺混燃烧效率影响很大。  相似文献   

15.
在液体火箭发动机涡轮的热试过程中,由于工作条件极端恶劣,要进行细致的流场测量是不可能的。但是,这些测量参数对于了解涡轮中复杂的流动又非常重要。马歇尔太空飞行中心(MSFC)采用全尺寸的发动机涡轮在等效的空气条件下进行了流场参数测量,用三孔眼睛蛇型探头、热膜探头和激光多普勒速度仪测量了航天飞机主发动机高压燃料涡轮进出口气流的速度分布、湍流强度以及附面层厚度,并用这些参数来完善计算流体力学的分析模型,进一步提高涡轮设计水平。本文还根据设计工况的一例试验结果对所使用的设备和测量方法进行了评述。  相似文献   

16.
为准确预测某型固体火箭发动机喷管的流场特性,建立了发动机燃烧室-喷管一体化三维流场模型,考虑了上游流场-燃烧室对喷管流场的影响,应用有限体积法,仿真计算出了发动机点火启动过程中喷管内激波的存在及变化趋势,仿真结果与一维等熵函数理论分析结果相一致。结果表明,在发动机点燃初期,喷管内燃气呈现亚音速流动,随着时间推移,在喷管扩张段出现了一道激波,燃气流动出现壅塞,随着燃烧室内燃气压力升高,激波逐渐移出喷管,喷管内呈现超音速顺畅流动。  相似文献   

17.
某发动机涡轮泵转子高温超速/疲劳试验研究   总被引:2,自引:0,他引:2  
涡轮转子是输送液氢/液氧推进剂的关键组件,其运行状态的好坏将直接影响发动机的性能和可靠性。超速/疲劳试验是转子质量控制、极限强度考核的一种试验方法。针对某发动机涡轮转子开展了高温超速/疲劳试验研究,首先研究了试验用转接器的设计方法,然后基于有限元方法建立了某液体火箭发动机涡轮泵转子高温超速试验的有限元模型,研究了温度对涡轮泵转子振型及临界转速等动特性的影响,分析了转子启动升速过程中常温和高温的振动幅值与支撑应力变化规律。在理论研究基础上开展了转子高温超速/疲劳试验研究,分析了高温状态下涡轮泵转子系统启动升速过程振动幅值的变化规律,研究了温度对涡轮泵转子超速动特性的影响规律。  相似文献   

18.
基于SST湍流模型,通过求解雷诺平均的Navier-Stokes方程组,对某亚声速、部分进气形式涡轮全流场进行三维粘性定常仿真计算。共计算了4种模型,分别包含不同的损失通道,获取了涡轮部件各通道的具体损失量值。计算结果表明:原涡轮叶片通道损失、泄漏损失、部分进气损失基本处于较低水平。涡轮进排气结构性能差,内部流动混乱,存在大量分离涡,对涡轮效率影响很大,具有较大提升空间。通过涡轮进气和排气结构的优化改进,采用切向进气和切向排气的变截面蜗壳形式结构,三维仿真结果表明:优化后涡轮部件效率从0. 675提高至0. 706,增加了4. 59%,且涡轮轴向尺寸大幅度缩减。  相似文献   

19.
为拓展某小型部分进气亚声速涡轮的应用能力,要求进一步提高其气动性能。使用Numeca商用计算流体力学软件建立了原型部分进气涡轮流道的全环域网格,进行了流场的粘性数值仿真,通过与相同叶型全周进气式涡轮的流场对比分析,揭示了部分进气式涡轮的流动机理和流动损失分布规律。在流场结构研究的基础上,对原型涡轮的动叶进行了改型优化,将动叶叶型由原来的纯冲击式叶型改为略带反力度的叶型,流场仿真结果表明涡轮效率提高了5个百分点。通过对改型前后2种部分进气式涡轮气动参数分布情况的对比分析,表明略带反力度的动叶叶型能有效减小部分进气式涡轮非进气扇区动叶通道内的回流损失,对提高涡轮性能有利,可为同类涡轮的气动设计提供参考。  相似文献   

20.
机械密封作为一种适合在苛刻工况下使用的轴封形式,在火箭各类涡轮泵中得到了广泛应用。涡轮泵的特殊性给机械密封的应用带来了一系列问题。对火箭涡轮泵机械密封方面的研究概况进行简述。首先从高速旋转轴系中的机械密封动力学方面,介绍了高速工况下轴系与机械密封的耦合关系和机械密封主动控制的尝试;然后对火箭涡轮泵机械密封中的摩擦磨损与润滑问题进行了介绍,涉及高速摩擦磨损下的可靠性、热力耦合与变形问题、材料配副、流体膜形成机理与端面几何特征优化等各方面问题;最后介绍了涡轮泵带压长期贮存的工作特点造成的静态慢渗问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号