共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
针对航空发动机原始数据中存在多样化退化信息及大量噪声干扰的问题,建立了一种基于多尺度特征融合的发动机剩余可用寿命(RUL)预测模型。构建了一种基于统计量的方法来降低原始数据中的噪声干扰;基于卷积双向长短期记忆网络(ConvBiLSTM)和多头注意力机制(Multi-Attention)设计了加权时空特征提取模块(WSTFEM);采用多尺度学习策略,构建多尺度卷积双向长短期记忆网络(MCBLSTM)提取数据在不同时间尺度下的加权时空特征;提取数据手工特征为RUL预测提供具有针对性和解释性的退化信息;将上述特征进行特征融合后输入至全连接网络获得RUL预测值。以FD004子集为例,使用C-MAPSS数据集对模型进行仿真试验验证。结果表明:MCBLSTM模型在4个子数据集上RUL预测精度更高。相较于BiLSTM,均方根误差减小了20.35%,非对称评分函数下降了54.76%。 相似文献
3.
针对航空发动机大修期内由性能主导的剩余使用寿命预测中复杂设备具有状态变量多、非线性特征严重的特点以及单一模型面临特征提取不充分、预测精度不足等问题,提出一种长短期记忆网络(LSTM)与轻梯度提升机(LightGBM)的组合新模型方法进行大修期内剩余使用寿命(RUL)预测.通过LSTM对原始数据进行特征提取,将LSTM的输出门中特征提取后的数据作为LightGBM模型的输入进行RUL预测.利用NASA提供的发动机实测数据集进行了仿真试验,实现了对单个发动机的RUL预测,并与其他6种模型预测结果进行对比,对其预测剩余使用寿命的有效性进行验证.结果表明:LSTM和LightGBM组合模型比其他模型的预测误差显著减小,其4组数据集均方根误差仅为12.45、20.23、12.58、21.75. 相似文献
5.
航空发动机性能退化趋势复杂,适时地对其进行剩余寿命预测和检修维护十分重要。提出一种基于多特征注意力的膨胀卷积网络模型来预测航空发动机剩余使用寿命,利用膨胀卷积增强提取序列数据时序信息的能力,同时建立残差连接以改善传统卷积网络中的梯度消失问题。首先采用定长滑动时间窗沿时间维度截取数据,对数据进行重构;再对每个特征对应的时间序列单独应用膨胀卷积提取时序信息;引入特征注意力机制计算各特征之间的相对重要性;在公开的航空发动机数据集上进行验证,并对比现有的主流预测方法。结果表明:该模型在时间序列数据预测方面有着更高的精度。 相似文献
6.
7.
复杂航空发动机在运行过程中易出现多退化信息而导致寿命预测不精确的问题,为此提出基于核主成分分分析(KPCA)和双向长短时记忆(BLSTM)神经网络的多信息融合寿命预测模型。首先采用KPCA 对多维退化数据集进行降维处理和信息融合,得到能够表征设备退化的低维特征数据集;然后利用BLSTM 神经网络模型对带有多维退化信息的航空发动机剩余寿命进行预测,得到监测数据与剩余寿命的映射关系;最后采用C-MAPSS 航空发动机退化数据集对提出的多信息融合寿命预测模型进行仿真验证,并与其他三种模型结果进行对比。结果表明:KPCA-BLSTM 能够对多维退化信息下的剩余寿命进行精准预测,本文提出的预测模型的误差与得分优于其他三种模型,而且预测精度更高。 相似文献
8.
《燃气涡轮试验与研究》2022,(1):1-5
为有效评定航空发动机转子叶片的检查更换周期,防止叶片过度使用危及飞行安全,将叶片在不同使用阶段的装机工作时间,及典型部位的表面残余应力,作为表征叶片剩余寿命的状态参数,提出了叶片剩余寿命模型的表达形式。以现役航空发动机部分转子叶片为对象,跟踪获得叶片工作历程中,不同阶段的状态参数以及叶片到寿失效信息,采用支持向量机算法和滚动优化方式,建立了叶片剩余寿命状态参数辨识模型。应用结果表明,模型准确性随着时间增长和可用样本数量增加而逐渐提高,预期应用价值明显。 相似文献
9.
针对现有航空发动机剩余寿命(RUL)预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器(SAE)结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式深度学习对发动机监测数据进行特征提取,构建反映性能退化的健康指标(HI),基于双向长短期记忆(BiLSTM)网络构建DeepAR预测模型,将提取后的HI序列输入到DeepAR模型中,预测模型对HI序列与使用时间的隐含关系进行全局学习,并输出发动机RUL的概率分布参数。利用C-MPASS涡扇发动机退化数据集进行实验,验证所提方法的有效性,结果表明,本文所提预测方法同其他方法相比,对监测数据融合的效果更好,预测模型性能提高6.4%,实际剩余寿命基本在95%置信区间内。 相似文献
10.
为了在航空发动机总体设计阶段准确快速的预估轮盘转子的重量,正确把握轮盘结构形式的发展趋势,建立基于等强度型面的轮盘尺寸设计和重量预估模型并开发计算程序,利用程序对某型涡扇发动机的轮盘转子进行重量预估,研究在不同轮盘中心孔半径、不同叶片应力参数(AN2)值下的轮盘尺寸和重量的变化规律,研究轮盘重量在不同轮盘中心孔半径、不同AN2值下随转子叶片材料的变化。结果表明:在满足一定的强度负荷限制和结构限制的条件下,存在轮盘应力和轮盘中心孔半径的最优组合,使得轮盘重量最小;转子叶片采用密度更小的新材料后,轮盘的中心孔半径增大,进而可能演化为叶环结构,转子部件重量大幅下降。 相似文献
11.
为了预测航空发动机的剩余使用寿命(RUL),针对从众多发动机状态参数中选择特定特征组合进行预测的问题,构建了基于多层感知器(MLP)集成随机子空间决策树的剩余寿命预测模型;随机选取抽样样本的特征子空间构建决策回归树;构建MLP模型结构和损失函数,通过适应性矩估计(Adam)算法优化MLP模型参数,基于MLP模型集成多棵决策树的预测结果,得到发动机的剩余使用寿命;在C-MAPSS数据集上进行的消融试验验证了预测模型中随机特征子空间、决策回归树和MLP集成模块均有益于改善平均绝对误差(MAE)、均方根误差(RMSE)、惩罚得分、拟合优度以及准确率等预测指标值。结果表明:当真实剩余寿命周期小于30时,预测准确率比循环神经网络(RNN)的预测结果提高了7.46%;与其他几种预测方法相比,该方法在多个指标综合评价下具有较好的性能,为多参数航空发动机剩余寿命的预测提供了一种有效方案。 相似文献
12.
为解决涡扇发动机监测数据维度高和寿命预测准确度低的问题,提出一种基于深度学习的寿命预测方法,开展了利用神经网络获取涡扇发动机剩余寿命的研究。利用堆叠自编码(SAE)网络从高维传感器数据中提取健康因子(HI),采用1维卷积神经网络-双向门控循环单元(1D-CNN-BGRU)方法捕捉HI序列中的空间和时间特征,并引入自注意(SA)机制对捕捉的特征分配权重,使用全连接层输出涡扇发动机剩余使用寿命(RUL),以此构建复合神经网络进行面向涡扇发动机高维数据的寿命预测。结果表明:利用NASA官方网站提供的涡扇发动机寿命试验公开数据集C-MAPSS对该方法进行验证,取得了均方根误差16.22和评分函数225的结果。证明了基于SAE-SA-1D-CNN-BGRU的寿命预测方法可实现涡扇发动机寿命的有效预测,能为涡扇发动机维修保障及健康管理提供有效决策支撑。 相似文献
13.
基于LSTM和CNN的高速柱塞泵故障诊断 总被引:1,自引:0,他引:1
针对高速轴向柱塞泵容易发生空化,且目前空化故障诊断方法存在依赖手工特征提取、鲁棒性不高的问题,提出了一种基于长短时记忆(LSTM)和一维卷积神经网络(1D-CNN)相结合的空化故障诊断方法。搭建了柱塞泵故障实验台,采集柱塞泵在不同空化等级下的壳体振动信号。利用LSTM和1D-CNN搭建的分类模型对不同进口压力情况下的振动信号进行空化等级识别。实验结果表明:提出的方法能够准确地识别出4类不同的空化等级,准确率高达99.5%,同时在不附加降噪方法的情况下,具有良好的鲁棒性,在0 dB信噪比的情况下,识别准确率高达87.3%。 相似文献
14.
针对飞机发动机监测参数多和预测模型不能充分提取监测数据的有效信息等问题,基于一维卷积神经网络(1DCNN)、时序卷积神经网络(TCN)和多头注意力机制,提出一种新的网络结构以实现飞机发动机剩余寿命的准确预测。对多维特征参数分别建立一个1DCNN-TCN模型,利用两层1DCNN对飞机发动机的多元传感器信号进行特征提取,利用TCN对特征量的时序信息进行记忆,通过多头注意力机制对多个1DCNN-TCN的输出分别进行加权处理,并拼接最终结果。分析结果表明,采用本文方法得到的RMSE和Score值比目前文献中最优值分别降低了6.84%,63.41%。该方法显著提升了飞机发动机剩余寿命预测的准确性。 相似文献
15.
提出一种基于LSTMAttention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网络(CNN)提取NWP数据的局部特征,并引入压缩和奖惩网络(SE)模块学习特征权重,利用特征重新标定方式提高网络表示能力;最后,将局部特征和整体特征进行特征融合,通过分类器输出分类结果。利用NOAA提供的美国加利福尼亚州某风电场的数据进行案例分析,证明了所提方法的有效性。试验结果表明,与BP神经网络、自回归积分滑动平均模型(ARIMA)模型和LSTM模型相比,LSTMAttention模型具有更高的预测精度,证明了该方法的有效性。 相似文献
16.
为解决小样本和噪声干扰下滚动轴承剩余寿命(RUL)预测准确率低的问题,提出一种基于信息最小二乘生成对抗网络(information least squares generative adversarial network,InfoLSGAN)和行动者-评论家(actor-critic,AC)算法的滚动轴承剩余寿命预测方法。将堆叠降噪自动编码器、信息生成对抗网络和最小二乘生成对抗网络相结合,构建InfoLSGAN,自动地从噪声数据中提取可解释的鲁棒特征,解决梯度消失问题;采用基于AC的训练算法训练InfoLSGAN,减少训练时间,加快收敛速度;根据训练后的InfoLSGAN,利用softmax分类器预测测试样本中滚动轴承的剩余寿命。通过滚动轴承加速疲劳寿命试验验证该方法的有效性。试验结果证明,当信噪比等于0时,该方法对滚动轴承测试样本的寿命预测准确率至少提高了10%。在小样本情况下,滚动轴承剩余寿命预测的平均准确率达9584%。 相似文献