首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of the transition region — corona — solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the the solar wind proton flux. The thermal force on -particles in the transition region sets the flow of helium into the corona. The frictional coupling between -particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content.  相似文献   

2.
Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.  相似文献   

3.
This paper contains a summary of the topics treated in the working group on abundance variations in the solar atmosphere and in the solar wind. The FIP bias (overabundance of particles with low First Ionization Potentials over photospheric abundances) in coronal holes and coronal hole associated solar wind amounts to values between 1 and 2. The FIP bias in the slow solar wind is typically a factor 4, consistent with optical observations in streamers. In order to distinguish between different theoretical models which make an attempt to explain the FIP bias, some observable parameters must be provided. Unfortunately, many models are deficient in this respect. In addition to FIP fractionation, gravitational settling of heavy elements has been found in the core of long lived streamers. The so-called electron 'freeze in' temperatures derived from in situ observed ionization states of minor ions in the fast wind are significantly higher than the electron temperatures derived from diagnostic line ratios observed in polar coronal holes. The distinction between conditions in plumes and interplume lanes needs to be further investigated. The 'freeze in' temperatures for the slow solar wind are consistent with the electron temperatures derived for streamers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Summarized below are the discussions of working group 3 on "Coronal hole boundaries and interactions with adjacent regions" which took place at the 7th SOHO workshop in Northeast Harbor, Maine, USA, 28 September to 1 October 1998. A number of recent observational and theoretical results were presented during the discussions to shed light on different aspects of coronal hole boundaries. The working group also included presentations on streamers and coronal holes to emphasis the difference between the plasma properties in these regions, and to serve as guidelines for the definition of the boundaries. Observations, particularly white light observations, show that multiple streamers are present close to the solar limb at all times. At some distance from the sun, typically below 2 R, these streamers merge into a relatively narrow sheet as seen, for example, in LASCO and UVCS images. The presence of multiple current sheets in interplanetary space was also briefly addressed. Coronal hole boundaries were defined as the abrupt transition from the bright appearing plasma sheet to the dark coronal hole regions. Observations in the inner corona seem to indicate a transition of typically 10 to 20 degrees, whereas observations in interplanetary space, carried out from Ulysses, show on one hand an even faster transition of less than 2 degrees which is in agreement with earlier Helios results. On the other hand, these observations also show that the transition happens on different scales, some of which are significantly larger. The slow solar wind is connected to the streamer belt/plasma sheet, even though the discussions were still not conclusive on the point where exactly the slow solar wind originates. Considered the high variability of plasma characteristics in slow wind streams, it seems most likely that several types of coronal regions produce slow solar wind, such as streamer stalks, streamer legs and open field regions between active regions, and maybe even regions just inside of the coronal holes. Observational and theoretical studies presented during the discussions show evidence that each of these regions may indeed contribute to the solar slow wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The dynamics of the solar corona as observed during solar minimum with the Ultraviolet Coronagraph Spectrometer, UVCS, on SOHO is discussed. The large quiescent coronal streamers existing during this phase of the solar cycle are very likely composed by sub-streamers, formed by closed loops and separated by open field lines that are channelling a slow plasma that flows close to the heliospheric current sheet. The polar coronal holes, with magnetic topology significantly varying from their core to their edges, emit fast wind in their central region and slow wind close to the streamer boundary. The transition from fast to slow wind then appears to be gradual in the corona, in contrast with the sharp transition between the two wind regimes observed in the heliosphere. It is suggested that speed, abundance and kinetic energy of the wind are modulated by the topology of the coronal magnetic field. Energy deposition occurs both in the slow and fast wind but its effect on the kinetic temperature and expansion rate is different for the slow and fast wind.  相似文献   

6.
In this paper I will briefly summarize the present status of our knowledge on the four different sorts of solar wind, their sources and their short- and long-term variations. First: the fast solar wind in high-speed streams that emerges from coronal hole regions. Second: the slow solar wind emerging from the non-active Sun near the global heliospheric current sheet above helmet streamers and underlying active regions. Third: the slow solar wind filling most of the heliosphere during high solar activity, emerging above active regions in a highly turbulent state, and fourth: the plasma expelled from the Sun during coronal mass ejections. The coronal sources of these different flows vary dramatically with the solar activity cycle.  相似文献   

7.
The goal of Working Group 1 was to discuss constraints on solar wind models. The topics for discussion, outlined by Eckart Marsch in his introduction, were: (1) what heats the corona, (2) what is the role of waves, (3) what determines the solar wind mass flux, (4) can stationary, multi-fluid models describe the fast and slow solar wind, or (5) do we need time dependent fluid models, kinetic models, and/or MHD models to describe solar wind acceleration. The discussion in the working group focused on observations of "temperatures" in the corona, mainly in coronal holes, and whether the observations of line broadening should be interpreted as thermal broadening or wave broadening. Observations of the coronal electron density and the flow speed in coronal holes were also discussed. There was only one contribution on observations of the distant solar wind, but we can place firm constraints on the solar wind particle fluxes and asymptotic flow speeds from observations with Ulysses and other spacecraft. Theoretical work on multi-fluid models, higher-order moment fluid models, and MHD models of the solar wind were also presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The solar wind emanating from coronal holes (CH) constitutes a quasi-stationary flow whose properties change only slowly with the evolution of the hole itself. Some of the properties of the wind from coronal holes depend on whether the source is a large polar coronal hole or a small near-equatorial hole. The speed of polar CH flows is usually between 700 and 800 km/s, whereas the speed from the small equatorial CH flows is generally lower and can be <400 km/s. At 1 AU, the average particle and energy fluxes from polar CH are 2.5×108 cm–2 sec–1 and 2.0 erg cm–2 s–1. This particle flux is significantly less than the 4×108 cm–2 sec–1 observed in the slow, interstream wind, but the energy fluxes are approximately the same. Both the particle and energy fluxes from small equatorial holes are somewhat smaller than the fluxes from the large polar coronal holes.Many of the properties of the wind from coronal holes can be explained, at least qualitatively, as being the result of the effect of the large flux of outward-propagating Alfvén waves observed in CH flows. The different ion species have roughly equal thermal speeds which are also close to the Alfvén speed. The velocity of heavy ions exceeds the proton velocity by the Alfvén speed, as if the heavy ions were surfing on the waves carried by the proton fluid.The elemental composition of the CH wind is less fractionated, having a smaller enhancement of elements with low first-ionization potentials than the interstream wind, the wind from coronal mass ejections, or solar energetic particles. There is also evidence of fine-structure in the ratio of the gas and magnetic pressures which maps back to a scale size of roughly 1° at the Sun, similar to some of the fine structures in coronal holes such as plumes, macrospicules, and the supergranulation.  相似文献   

9.
Since 1972, nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The results of comparisons of these observations are reviewed and it is demonstrated that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Non-polar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. There is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space but not all open-field regions have associated coronal holes. The well-observed declining phase of the last solar cycle was characterized by stable magnetic field and coronal hole patterns which were associated with recurrent, high-speed wind streams and interplanetary magnetic field patterns at the Earth. The ascending phase of the current cycle has been characterized by transient magnetic field and coronal hole patterns which tend to occur at high solar latitudes. This shift in magnetic field and coronal hole patterns has resulted in a less obvious and more complicated association with high-speed wind streams at the Earth.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Visiting Scientist, Kitt Peak National Observatory.  相似文献   

10.
Some theoretical aspects of solar coronal streamers are discussed with emphasis on the current sheet and reconnection processes going on along the axis of the streamer. The dynamics of the streamer is a combination of MHD and transport, with acceleration of particles due to reconnection and leakage of plasma outwards as a slow solar wind as the observable results. The presence of the almost-closed magnetic bottles of streamers that can store high-energy particles for significant times provides the birdcage for solar cosmic rays, the reconnection in the sheet feeds medium-energy protons into the corona for the large-scale storage needed for certain flare models, and the build-up of excess density sets the stage for coronal mass ejections.  相似文献   

11.
The ESA/NASA spacecraft Ulysses is making, for the first time, direct measurements in the solar wind originating from virtually all places where the corona expands. Since the initial two polar passes of Ulysses occur during relatively quiet solar conditions, we discuss here the three main regimes of quasi-stationary solar wind flow: the high speed streams (HSSTs) coming out of the polar coronal holes, the slow solar wind surrounding the HSSTs, and the streamers which occur at B-field reversals. Comparisons between H- maps and data taken by Ulysses demonstrate that as a result of super-radial expansion, the HSSTs occupy a much larger solid angle than that derived from radial projections of coronal holes. Data obtained with SWICS-Ulysses confirm that the strength of the FIP effect is much reduced in the HSSTs. The systematics in the variations of elemental abundances becomes particularly clear, if these are plotted against the time of ionisation (at the solar surface) rather than against the first ionisation potential (FIP). We have used a superposed-epoch method to investigate the changes in solar wind speed and composition measured during the 9-month period in 1992/93 when Ulysses regularly passed into and out of the southern HSST. We find that the patterns in the variations of the Mg/O and O7+/O6+ ratios are virtually identical and that their transition from high to low values is very steep. Since the Mg/O ratio is controlled by the FIP effect and the O7+/O6+ ratio reflects the coronal temperature, this finding points to a connection between chromospheric and coronal conditions.  相似文献   

12.
We present a solar wind model which takes into account the possible origin of fast solar wind streams in coronal plumes. We treat coronal holes as being made up of essentially 2 plasma species, denser, warmer coronal plumes embedded in a surrounding less dense and cooler medium. Pressure balance at the coronal base implies a smaller magnetic field within coronal plumes than without. Considering the total coronal hole areal expansion as given, we calculate the relative expansion of plumes and the ambient medium subject to transverse pressure balance as the wind accelerates. The magnetic flux is assumed to be conserved independently both within plumes and the surrounding coronal hole. Magnetic field curvature terms are neglected so the model is essentially one dimensional along the coronal plumes, which are treated as thin flux-tubes. We compare the results from this model with white-light photographs of the solar corona and in-situ measurements of the spaghetti-like fine-structure of high-speed winds.  相似文献   

13.
Prominent enhancements in Doppler scintillation lasting a fraction of a day (solar source several degrees wide) and overlying the neutral line represent the signature of the heliospheric current sheet and the apparent interplanetary manifestation of coronal streamers near the Sun. This first detection of coronal streamers in radio scintillation measurements provides the link betweenin situ measurements of the spatial wavenumber spectrum of electron density fluctuations beyond 0.3 AU and earlier measurements deduced from radio scintillation and scattering observations inside 0.3 AU. Significant differences between the density spectra of fast streams and slow solar wind associated with the heliospheric current sheet near the Sun reinforce the emerging picture that high- and low-speed flows are organized by the large-scale solar magnetic field, and that while the contrast between solar wind properties of the two flows is highest near the Sun, it undergoes substantial erosion in the ecliptic plane as the solar wind expands.  相似文献   

14.
McComas  D.J.  Goldstein  R.  Gosling  J.T.  Skoug  R.M. 《Space Science Reviews》2001,97(1-4):99-103
By the time of the 34th ESLAB symposium, dedicated to the memory of John Simpson, Ulysses had nearly reached its peak southerly latitude in its second polar orbit. The global solar wind structure observed thus far in Ulysses' second orbit is remarkably different from that observed over its first orbit. In particular, Ulysses observed highly irregular solar wind with less periodic stream interaction regions, much more frequent coronal mass ejections, and only a single, short interval of fast solar wind. Ulysses also observed the slowest solar wind seen thus far in its ten-year journey (∼270 km s−1). The complicated solar wind structure undoubtedly arises from the more complex coronal structure found around solar activity maximum, when the large polar coronal holes have disappeared and coronal streamers, small-scale coronal holes, and frequent CMEs are found at all heliolatitudes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
This is the first study of the isotopic composition of solar wind helium with the SWICS time-of flight mass spectrometer. Although the design of SWICS is not optimized to measure3He abundances precisely,4He/3He flux ratios can be deduced from the data. The long term ratio is 2290±200, which agrees with the results obtained with the ICI magnetic mass spectrometer on ISEE-3 and with the Apollo SWC foil experiments.The ULYSSES spacecraft follows a trajectory which is ideal for the study of different solar wind types. During one year, from mid-1992 to mid-1993, it was in a range of heliographic latitudes where a recurrent fast stream from the southern polar coronal hole was observed every solar rotation. Solar wind bulk velocities ranged from 350 km/s to 950 km/s which would, in principle allow us to identify velocity-correlated compositional variations. Our investigation of solar wind helium, however, shows an isotopic ratio which does not depend on the solar wind speed.  相似文献   

16.
On the Slow Solar Wind   总被引:1,自引:0,他引:1  
Fisk  L.A.  Schwadron  N.A.  Zurbuchen  T.H. 《Space Science Reviews》1998,86(1-4):51-60
A theory for the origin of the slow solar wind is described. Recent papers have demonstrated that magnetic flux moves across coronal holes as a result of the interplay between the differential rotation of the photosphere and the non-radial expansion of the solar wind in more rigidly rotating coronal holes. This flux will be deposited at low latitudes and should reconnect with closed magnetic loops, thereby releasing material from the loops to form the slow solar wind. It is pointed out that this mechanism provides a natural explanation for the charge states of elements observed in the slow solar wind, and for the presence of the First-Ionization Potential, or FIP, effect in the slow wind and its absence in fast wind. Comments are also provided on the role that the ACE mission should have in understanding the slow solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The abundance of 3He in the present day local interstellar cloud (LIC) and in the sun has important implications for the study of galactic evolution and for estimating the production of light nuclei in the early universe. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is used to measure the isotopic ratio of helium (3He/4He = ) both in the solar wind and the local interstellar cloud. For the solar wind, the unique high-latitude orbit of Ulysses allows us to study this ratio in the slow and highly dynamic wind in the ecliptic plane as well as the steady high-latitude wind of the polar coronal holes. The 3He+/4He+ ratio in the local cloud is derived from the isotopic ratio of pickup helium measured in the high-speed solar wind. In the LIC the ratio is found to be (2.48 -0.62 +0.68 ) × 10-4 with the 1- uncertainty resulting almost entirely from statistical error. In the solar wind, is determined with great statistical accuracy but shows systematic differences between fast and slow solar wind streams. The slow wind ratio is variable. Its weighted average value (4.08 ± 0.25) × 10-4 is, within uncertainties, in agreement with the Apollo SWC results. The high wind ratio is less variable but smaller. The average in the fast wind is (3.3 ± 0.3) × 10-4.  相似文献   

18.
We present a simple technique describing how limits on the helium abundance, , the ratio of helium to proton number density, can be inferred from measurements of the electron density, temperature and their gradients below 1.5R s. As an illustration, we apply this technique to emission line intensities in the extreme ultraviolet, measured in polar coronal holes. The example indicates that can be significantly large in the inner corona. This technique could be applicable to the more extensive data to be obtained from coordinated ground and space-based observations during the Ulysses south polar passage and the Spartan flight, and subsequently during the SOHO mission. Limits on the helium abundance in the solar wind can thus be derived from its source region and compared to interplanetary values.  相似文献   

19.
Acceleration of the solar wind   总被引:2,自引:0,他引:2  
In this review, we discuss critically recent research on the acceleration of the solar wind, giving emphasis to high-speed solar wind streams emanating from solar coronal holes. We first explain why thermally driven wind models constrained by solar and interplanetary observations encounter substantial difficulties in explaining high speed streams. Then, through a general discussion of energy addition to the solar wind above the coronal base, we indicate a possible resolution of these difficulties. Finally, we consider the question of what role MHD waves might play in transporting energy through the solar atmosphere and depositing it in the solar wind, and we conclude by examining, in a simple way, the specific mechanism of solar wind acceleration by Alfvén waves and the related problem of accelerating massive stellar winds with Alfvén waves.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.On leave from the Auroral Observatory, Institute of Mathematical and Physical Sciences, University of Tromsø, N-9001 Tromsø, Norway.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
Interplanetary measurements of the speeds, densities, abundances, and charge states of solar wind ions are diagnostic of conditions in the source region of the solar wind. The absolute values of the mass, momentum, and energy fluxes in the solar wind are not known to an accuracy of 20%. The principal limitations on the absolute accuracies of observations of solar wind protons and alpha particles arise from uncertain instrument calibrations, from the methods used to reduce the data, and from sampling biases. Sampling biases are very important in studies of alpha particles. Instrumental resolution and measurement ambiguities are additional major problems for the observation of ions heavier than helium. Progress in overcoming some of these measurement inadequacies is reviewed.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号