首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bariteau  M.  Mandeville  J.-C. 《Space Debris》2000,2(2):97-107
When a micro-debris or a micrometeoroid impacts a spacecraft surface, a large number of secondary particles, called ejecta, are produced. These particles can contribute to a modification of the debris environment: either locally by the occurrence of secondary impacts on the components of complex and large space structures, or at great distance by the formation of a population of small orbital debris. This paper describes firstly, the ejecta overall production, and secondly, the lifetime and the orbital evolution of the particles. Finally the repartition of ejecta in LEO is computed. Some results describing the population as a function of size and altitude are presented.  相似文献   

2.
Hanada  Toshiya 《Space Debris》2000,2(4):233-247
We have conducted a series of low-velocity impact experiments to understand the dispersion properties of fragments newly created by low-velocity impacts possible in space, especially in geostationary Earth orbit. The test results are utilized to establish a mathematical prediction model to be used in debris generation and propagation codes. Since the expected collision velocity between catalogued objects in geostationary Earth orbit shows a peak at a few hundreds meters per second, these impact experiments were conducted at a velocity range lower than 300m/s. As a typical structure of satellites in geostationary Earth orbit, thin aluminum honeycomb sandwich panels with carbon fiber reinforced plastics face sheets were prepared, while the projectile was a stainless steel ball of 9mm diameter. The data collected through these impact experiments have been re-analyzed based on the method used in the National Aeronautics and Space Administration (NASA) standard breakup model 1998 revision. The results indicate that the NASA standard breakup model derived from hypervelocity impacts could be applied to low-velocity collision possible in geostationary Earth orbit with some modifications.  相似文献   

3.
Anselmo  L.  Pardini  C. 《Space Debris》1999,1(2):87-98
Tethers are being proposed for a growing number of space applications. However, they may be particularly vulnerable to orbital debris and meteoroid impacts. In order to provide useful reference data for tether systems design, detailed analytical and numerical computations were carried out to assess the average impact rate of artificial debris and meteoroids. The specific geometric properties of tethers as debris targets, when compared to typical satellites, are discussed, and the results obtained are presented in tabular form, as a function of debris size and tether diameter.The computations were carried out for six circular orbits, spanning three altitudes (600, 800 and 1000km) and two inclinations (30° and 50°). Tether diameters in between 1mm and 2cm and debris larger than 0.1mm were considered in the analysis. The collision risk of tethers with spacecraft and upper stages in orbit was estimated as well.In the debris interval and orbital regimes considered, artificial debris represent the dominant contributor to the impact rate. At 600km and in the 0.1–10mm size range, the meteoroid and orbital debris impact rates are still comparable; however, at higher altitudes and in the 1–10cm size range, meteoroids contribute 20–30 times less to the collision probability.The results obtained confirm that for single-strand tethers in low Earth orbit the probability to be severed by orbital debris and meteoroid impacts is quite significant, making necessary the adoption of innovative designs for long duration missions.  相似文献   

4.
A Space Debris Impact Risk Analysis Tool (SDIRAT) was developed and implemented to assess the orbital debris impact risk on a specified target in Earth orbit, in terms of flux, relative velocity, impact velocity, direction of the incoming particles, debris mass and diameter. Based on a deterministic approach, SDIRAT uses a realistic orbital debris population where each representative particle is identified by its rectangular coordinates (position and velocity) at a reference epoch. Using this information, some geometrical algorithms were developed and implemented to evaluate the contribution of each particle to the incoming flux. The position of the particle with respect to a specified target drives the selection criteria to reject, or select, it as a possible projectile. On the other hand, the relative velocity vector can be used to estimate the impact direction of the incoming flux. SDIRAT was conceived as a general tool for a variety of scenarios, such as low circular and elliptical orbits, up to the geosynchronous ring. This paper presents some examples of possible applications, including the computation of the incoming debris flux on SAX (low Earth orbit), SIRIO (geosynchronous orbit) and the IRIS upper stage (elliptical orbit). Other applications assess the impact risk for the Soviet Radar Ocean Reconnaissance Satellites Cosmos 1900 and Cosmos 1932.  相似文献   

5.
Smirnov  N.N.  Nazarenko  A.I.  Kiselev  A.B. 《Space Debris》2000,2(4):249-271
The paper discusses the mathematical modeling of long-term orbital debris evolution taking into account mutual collisions of space debris particles of different sizes. Investigations and long-term forecasts of orbital debris environment evolution in low Earth orbits are essential for future space mission hazard evaluation and for adopting rational space policies and mitigation measures. The paper introduces a new approach to space debris evolution mathematical modeling based on continuum mechanics incorporating partial differential equations. This is an alternative to the traditional approaches of celestial mechanics incorporating ordinary differential equations to model fragments evolution. The continuum approach to orbital debris evolution modeling has essential advantages for describing the evolution of a large number of particles, because it replaces the traditional tracking of space objects by modeling the evolution of their density of distribution.  相似文献   

6.
SDEEM2015空间碎片环境工程模型   总被引:1,自引:0,他引:1  
文章介绍了哈尔滨工业大学空间碎片高速撞击研究中心"十二五"期间发布的空间碎片环境工程模型(SDEEM 2015)。该模型可实现LEO空间碎片环境描述,空间碎片撞击风险评估以及地基探测结果仿真,还可输出LEO航天器不同轨道位置处空间碎片撞击通量随撞击方位角、撞击速度及碎片尺寸的分布规律,地基探测设备探测区域内空间碎片空间密度及通量的分布情况等信息。SDEEM 2015适用轨道高度范围为200~2000 km,时间范围为1959年—2050年,所考虑的空间碎片来源包括解体碎片、Na K液滴、固体火箭发动机喷射物、溅射物和剥落物。  相似文献   

7.
Long-duration spacecraft in low earth orbit such as the International Space Station (ISS) are highly susceptible to high-speed impacts by pieces of debris from past earth-orbiting missions. Among the hazards that accompany the penetration of a pressurized manned spacecraft are critical crack propagation in the module wall, crew hypoxia, and uncontrolled thrust due to air rushing out of the module wall hole. A Monte Carlo simulation tool was used to determine the effect of spacecraft wall construction on the survivability of ISS modules and crew following an orbital debris penetration. The simulation results indicate that enhanced shield wall designs (i.e., multi-wall systems with heavier inner bumpers) always lead to higher overall survivability of the station and crew due to an overwhelming decrease in likelihood of module penetration. The results of the simulations also indicate that changes in crew operations, equipment locations, and operation procedures can significantly reduce the likelihood of crew or station loss following an orbital debris penetration.  相似文献   

8.
Chobotov  V.A.  Jenkin  A.B. 《Space Debris》2000,2(1):9-40
Many concepts of future space systems involve the use of parabolic mirrors for optical applications. The need for a highly reflective finish means that performance of such systems will be particularly vulnerable to space debris and micrometeoroids. A case study was performed to examine the micrometeoroid and debris hazard posed to an orbiting parabolic mirror. The mirror considered was nominally Earth-pointed in a circular orbit with two candidate altitudes in low Earth orbit (LEO), well within the region inhabited by man-made debris. The timeframes of interest for the two missions were 2002–2004 and 2005–2015. Microgram and larger particles were considered.To perform this study, it was necessary to determine the debris and meteoroid flux across the parabolic surface. To assess sensitivity of results to uncertainity in available data, two approaches were taken. The first approach was an analytical procedure based on use of long duration exposure facility (LDEF) data and published theoretical results. The second approach used two readily available computer models: the ESA MASTER model and NASA's ORDEM96. In addition, an in-house implementation of the Grün meteoroid model was used. While multiple results were available for the total flux and flux distributed over azimuth, only the MASTER model was available for generating the desired elevation data to obtain the flux distribution over the parabolic mirror. In an attempt to bound the uncertainty in the knowledge of the elevation distribution, the results from both the MASTER and ORDEM96 models were processed together to form a separate, hybrid prediction. In addition, results were used in the preliminary design of a protective skirt.This case study elucidated the practical obstacles and considerations in performing a sufficiently accurate debris and meteoroid analysis using data and tools that are readily available to the broad space sector. The resulting procedures are useful in the assessment of the risk posed to optics by the meteoroid and debris environment and in the design of protection.  相似文献   

9.
为快速确定与预报卫星在轨爆炸解体产生的大量空间碎片的轨道,提出了一种基于ANSYS/AUTODYN、MATLAB、STK等多软件平台联合仿真分析卫星结构爆炸解体碎片运行轨道的方法。利用ANSYS/AUTODYN对典型薄壁圆柱模拟地球同步轨道卫星结构进行爆炸数值分析,得到碎片的数量、质量分布和速度特性信息。再利用MATLAB软件对卫星爆炸仿真得到的碎片参数进行处理,将处理后的数据导入到STK软件的通用摄动SGP4模型中,得出卫星爆炸碎片的早期轨道数据。最后对爆炸碎片的轨道分布、速度增量、轨道演化等进行分析。结果表明:该方法能满足大量爆炸碎片的轨道仿真要求,能有效提高碎片轨道信息转换效率,对目前难以跟踪的cm级以下碎片,也能提供相应的初始轨道数据,使用方便,通用性好。研究结果可为快速捕获卫星爆炸碎片,及时规避航天器碰撞风险提供参考。  相似文献   

10.
以我国正在实施的探月计划嫦娥一号月球探测器飞行测控需求为背景,利用数值仿真的方法,考虑现有USB卫星测控网和中国科学院VLBI射电天文观测网分布,在观测弧段受到限制的前提下,探讨了环月探测器测轨手段和测控弧段的选择及其相应的定轨精度。  相似文献   

11.
介绍了目前国际上普遍采用的近地轨道热环境参数与传统参数之间的差异。对不同轨道的两个航天器,分别按两种参数取值进行了温度计算。结果表明,与国际上目前采用数值相比,采用传统的热环境参数值会使得计算的高温工况外热流偏低,而使低温工况时外热流偏高,从而对航天器内部温度会造成1℃~2℃的偏差。  相似文献   

12.
空间环境与效应监测数据集成化管理与快速处理是保证航天器在轨安全的重要依据。文章基于航天器空间环境与效应监测数据管理与处理系统的功能要求,给出了系统的组成、架构和数据处理流程。该系统集成了航天器空间环境与效应监测数据的管理、处理、综合分析、参数标定和可视化显示功能,能够实现电子、质子、总剂量、原子氧、温度、表面电位、污染等环境与效应在轨数据的瞬时参数(通量、剂量率、温度变化率、表面电位变化率、污染沉积率)和累积参数(注量、电离总剂量、温度、表面电位、总污染量)的监显,为航天器的在轨健康实时监测、风险快速预报预警提供重要支撑。  相似文献   

13.
随着宇航事业的发展,网状展开天线的尺寸越来越大,对形面精度要求越来越高(特别是高频段),在轨热环境与地面调整点的热环境差别大,必须采用基于在轨热环境的网面精度调整技术以满足反射面的精度要求。就在轨热环境下的辅助牵引面式网面精度调整技术的理论分析及调整方法进行了探讨,给出了计及在轨热环境的网面形状精度调整的基本理论公式及调整步骤,并对某样机进行了调整计算。计算结果表明,文中的分析、公式、方法是正确的,可行的。  相似文献   

14.
为构建利用柔性机械臂捕获空间碎片的系统仿真模型,首先分析梳理空间碎片捕获典型任务流程,包括轨道转移、位置保持、路径规划、动量稳定控制等阶段;然后针对任务流程分别搭建基于Simu Link的路径规划、动量缓冲控制、姿态控制、动力学和轨道仿真等子系统;各个子系统之间以TCP/IP的方式进行数据交互,最终完成空间碎片软捕获任务姿轨控仿真系统的构建。  相似文献   

15.
激光驱动飞片速度的理论分析   总被引:7,自引:3,他引:4  
激光驱动飞片技术是模拟微流星体/空间碎片对航天器外露材料/部件超高速撞击,用于开展撞击累积损伤效应与材料性能退化的研究,也是进行航天器在轨寿命预估和空间碎片防护研究的重要技术手段。飞片速度是衡量激光驱动飞片技术水平的关键性参数之一。文章从Lawrence改进的Gurney模型出发,着重分析了激光输出能量、脉宽、聚焦光斑大小以及飞片靶厚度等参数与飞片速度大小的关系,提出激光驱动飞片技术中提高飞片速度的主要途径:其他条件一定时,薄靶较厚靶更易获取高速飞片;小光斑较大光斑更易获取高速飞片;长脉宽高能激光器或短脉宽低能激光器比较适合获取高速飞片。以上结论对从试验上获取高速飞片具有重要指导意义。  相似文献   

16.
Congressional language in the 1998 US Senate Armed Services Committee authorization bill directed ... the Secretary of the (United States) Air Force to undertake a design study of a system that could catalog and track debris down to one centimeter in size out to 1000kilometer in altitude. The US Air Force Research Laboratory, in conjunction with other US National Laboratories and the National Aeronautics and Space Administration (NASA) conducted a study that examined what technical systems and operations would be required to perform such a mission. This paper outlines the study process, details the findings, draws conclusions, and makes recommendations as to what would be needed to develop an optically based system capable of cataloging and tracking small debris in low Earth orbit.  相似文献   

17.
摆动扫描地球敏感器数学模型及飞行试验结果   总被引:1,自引:0,他引:1  
描述了东方红三号卫星(DFH-3)控制系统设计和数学仿真中采用的摆动扫描地球敏感器IRES-01的数学模型,东方红三号卫星近三年飞行试验结果与数学仿真结果基本一致,证明数学模型是正确的。  相似文献   

18.
Stein  Charles  Roybal  Robert  Tlomak  Pawel  Wilson  Warren 《Space Debris》2000,2(4):331-356
In this paper, we describe a compact, low cost, fast turn-around-time technique used at the Air Force Research Laboratory to study hypervelocity debris impact effects on spacecraft structures and components. The technique described was used to study debris effects in the areas of: shock physics, debris-produced contamination, chemical analyses of the impact ejecta and debris initiated spacecraft discharge. Examples of research results obtained with the technique are presented and illustrate problems encountered in the field of space debris effects on spacecraft.  相似文献   

19.
本文介绍了对地定向三轴稳定卫星的圆锥扫描式地球敏感器的姿态测量原理、输出几何关系和数学模型,并以实际例子说明大角度姿态控制时必须注意敏感器输出的轴间耦合问题  相似文献   

20.
空间目标轨道信息软件平台的建设   总被引:1,自引:0,他引:1  
空间目标轨道信息是空间态势感知的重要要素,是空间碰撞预警、空间碎片环境模型和许多空间应用的基础。因而,空间目标轨道确定成为空间态势感知的主要任务之一。文章介绍武汉大学测绘学院正在开发建设的空间目标轨道信息服务软件平台,该平台拥有的主要功能有:利用多源数据的卫星/空间碎片轨道确定(包括初轨确定)与预报、大气质量密度模型精化、空间碰撞预警和半解析法快速精密轨道传播等。文章还针对软件平台功能的研究进展进行了综述,介绍了软件平台发展规划。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号