首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MX导弹第三级样机评价   总被引:1,自引:0,他引:1  
本文评述赫克力斯公司正在为空军研制的MX导弹第三级的设计。第三级固体发动机的许多部件和材料都选用了最新的技术。这些新技术包括:带有碳复合材料裙的凯夫拉49发动机壳体;二维和三维碳/碳复合材料的轻型喷管;硝酸酯增塑的聚醚推进剂(NEPE),这种推进剂比冲高、延伸率大;以及两节套筒式可延伸出口锥(EEC)。这些新技术的应用提高了整个发动机的性能。本文对第三级的设计及其主要部件都作了概要介绍。为了说明MX第三级的设计是切实可行的,还将MX第三级各部件设计与以前研制的发动机作了比较。  相似文献   

2.
某工程第三级固体火箭发动机碳纤维/环氧树脂复合壳体内绝热层结构设计采用工程研制设计方案,成功地通过了发动机地面热试车考核,经解剖分析,预估了飞行环境发动机燃烧室绝热层结构最小剩余安全余量,给出了发动机在各种使用条件下工作热防护可靠的结论。  相似文献   

3.
《航空周刊》1984年1月23日报道: 1983年12月20日在范登堡空军基地进行了MX导弹第三次飞行试验。由于出现了焊接事故,试验仅部分成功。但美国空军官员们说,这次事故不会影响剩下的17次飞行试验的进度。发生故障的原因是焊接在第三级发动机可延伸喷管上的致动杆的一块挡热板脱焊,使致动杆接触到喷管中喷出的高温气体而被烧坏。这造成在第三级发动机的一分钟工作时间中有27秒延伸喷管未能伸出,从而降低了发动机的性能。为了补偿速度,第四级轴向主发动机与第三级分离后就要比正常情况工作更长一段时间。结果  相似文献   

4.
美国空军火箭推进试验室1976年12月22日在爱德华空军基地进行第一次全尺寸MX导弹第一级活动喷管试验。试验失败,喷管破坏严重。据报道,这次故障是发生在点火后10秒(总燃烧时间60秒)喷管完成了第一个全摆角14°以后。石墨衬垫的碎块从喷喉处抛射出来,试验发动机燃烧室压力下降到约28公斤/厘米~2。在21秒和29秒,大块喷管碎片被抛出,然后燃烧室压力进一步降低。最后整  相似文献   

5.
近几十年来,国外在固体火箭发动机复合材料壳体的研制方面,有了很大的进展。六十年代初期,美国用玻璃纤维作北极星A2、北极星 A3、海神 C3等导弹的发动机壳体材料,与金属材料相比,强度是钢的两倍以上,重量可减轻60%左右。七十年代中期研制成功了凯夫拉49纤维,用于三叉戟Ⅰ、MX 等导弹上,较之玻璃纤维,重量轻35%,且复合材料的环向模量增加70%,特性系数由2.1×10~6厘米增至3.3×10~6厘米。近几年来又研制了高强度石墨纤维,这是新一代的固体火箭发动机壳体材料,如果用它来代替 MX 导弹所用的凯夫拉材料,还可减少结构重量20~30%。据称,石黑纤维壳体的尺寸稳定性优良,可以减少推进  相似文献   

6.
三叉戟(C4)导弹仪器舱是弹头、第三级发动机、制导系统设备和末助推控制系统设备的容器和承力构件,其重量(包括仪器)为146公斤(324.8磅),占全弹重量的0.5%。仪器舱的锥体(见图1)是  相似文献   

7.
本组照片示出 MX 洲际弹道导弹模样试验弹在 Denver 的马丁·马丽埃塔宇航试验场组装情况。左上图是第一级发动机起吊至垂直位置的情形(左上图)。最近在马丁试验场试验中是用配重物来模拟导弹总重。MX 导弹第一级约9.144米长,用来将重量为86.18吨的 MX 导弹发射至约22.86公里高空。第二级长度约5.486米,装置在第一级上端(右上图)。MX 第  相似文献   

8.
为实现在线测量固体发动机燃烧室的粒径参数,基于激光粒度测量法原理,设计了一套固体推进剂粒径在线测量的试验系统和冷态测试校验方法,验证了激光粒度测量法的可行性。基于此,针对固体发动机的特点,建了一套基于激光粒度法在线实时测量固体发动机燃烧室粒度参数的试验系统,开展了发动机燃烧室粒度参数的在线测量实验,获得了发动机燃烧室的粒径及粒径分布。试验结果表明,发动机燃烧室中Al_2O_3粒径在0.12~36.7μm之间,D_(v(50))=5.83μm,粒子尺寸为4.65μm时,所占的比重最多,为14.14%。研究成果为固体火箭发动机粒度的在线测量提供了一种新的测试方法。  相似文献   

9.
长征三号是我国研制的第一个三级大型运载火箭,它能将重量为1.4吨的卫星送入地球同步转移轨道。该火箭的第一级和第二级是在长征二号运载火箭的基础上改进而成的,使用四氧化氮和偏二甲肼作为推进剂。第三级为新研制的液氢/液氧发动机。第三级发动机的代号为YF-73。1984年4月8日,长征三号运载火箭首次成功地把我  相似文献   

10.
本文是评论MX导弹喷管先进材料的三篇文章中的第二篇。第一篇文章于1977年4月在SAMPE季刊中发表(译文见“固体火箭技术”1978年第二期第99—105页),综述了MX导弹喷管对材料的要求,叙述了石墨材料的结构、性质和性能之间的关系。本文继续对MX的第一级和第二级发动机喷管所用先进材料进一步进行评价。  相似文献   

11.
一引言固体火箭发动机的喷管通过控制排气的膨胀使燃烧室产生的燃气能量有效地转换为动能,因而给飞行器提供推力。飞行器约65~75%的推力是将燃烧室产物在喷管喉部加速到声速所产生的,其余的推力是通过喷管扩散段产生的。通常喷管设计的目的是控制其膨胀程度使整个飞行器的航程和有效载荷在一定的外形、重量和成本的限度内达到最大。因此,喷管是飞行器的组成部分,不能独立于该系统使喷管最佳化。由于这种相互  相似文献   

12.
固体火箭超燃冲压发动机补燃室构型的影响分析   总被引:2,自引:0,他引:2  
针对不同补燃室结构参数对固体火箭超燃冲压发动机补燃室掺混燃烧性能的影响进行研究,分析各级燃烧室的长度与扩张角度对补燃室性能的影响。采用基于密度的二阶迎风格式对补燃室掺混燃烧进行模拟,湍流模型和燃烧模型分别采用SST k-ω模型和涡团耗散模型。结果表明,提高燃烧效率与降低总压损失是相互矛盾的;燃烧效率随燃烧室长度的增加而增大,随燃烧室扩张角度的增加而减小;总压恢复系数随燃烧室长度的增加而减小,随燃烧室扩张角度的增加而增大;一级燃烧室的结构参数对燃烧效率与总压恢复系数的影响最大。当补燃室的总长与出口面积一定时,以发动机的总体性能参数作为补燃室构型的优化目标,对一、二级燃烧室长度与一、三级燃烧室扩张角度进行优化。  相似文献   

13.
液氧/煤油发动机高压推力室采用了多条液膜冷却环带技术。由于室压高和热流密度大,易出现冷却环带结构局部过热现象,局部过热(甚至局部烧蚀)有时发生在燃烧室收缩段的冷却环上沿。传热计算和对比分析表明,在降低边区混合比的同时,第一冷却环带流量增大25%,可使过热处气壁温下降约35℃。采取增加冷却环带流量、降低燃烧室边区混合比、改善液膜冷却局部喷注结构等措施有利于燃烧室壁面的热防护,可防止局部过热的发生。  相似文献   

14.
为了探索多孔介质冷却通道在液体火箭发动机燃烧室中的应用,采用金属粉末烧结法制备了多孔介质,设计了多孔介质通道的流阻和传热特性测试装置,建立了采用多孔介质冷却通道的燃烧室传热预测模型,对具有不同结构参数的多孔介质进行了研究。结果表明:随着孔隙率的增大,多孔介质通道的流阻逐渐减小,换热能力逐渐下降;基于传热模型的预测结果与试验有一定偏差,最大达到25%;相较铣槽通道,多孔介质冷却通道能够在燃烧室中获得更好的热防护效果。  相似文献   

15.
根据固体火箭发动机绝热防护模型,提出了一种嵌金属丝端燃装药绝热层设计方法。用该法对某特定发动机燃烧室绝热层的设计结果表明:与动机原绝热层烧蚀相比,用本方法设计的绝热层可在绝热防护达到安全要求的同时,最大化地降低发动机消极质量。  相似文献   

16.
燃烧室结构对固液火箭发动机燃烧与流动的影响研究   总被引:1,自引:0,他引:1  
建立了85%H2O2-PE固液火箭发动机氧化剂H2O2催化分解、PE燃料热解以及热解气体与氧化剂分解气体扩散燃烧的综合模型,计算了固液火箭发动机燃烧室轴对称二维内流场,对不同结构燃烧室内流场的计算结果进行了对比,研究了补燃室和氧化剂入口突扩结构对发动机燃烧性能的影响.结果表明,增加氧化剂入口突扩段有利于发动机稳定工作和充分燃烧,增加补燃室长度可以提高发动机平均燃烧温度,使燃烧更加充分.  相似文献   

17.
在1982年固体火箭的主要成就中,领先的是航天飞机固体助推器那继续给人以深刻印象的成绩,以及在 MX 洲际弹道导弹研制方面所取得的进展。这个直径为92英寸的导弹,其前三级都用的固体推进剂火箭发动机,第四级是一个液体双组元推进剂系统,它预定在1983年初进行首次发射。  相似文献   

18.
高性能的俄罗斯液氧/煤油发动机NK-33   总被引:1,自引:0,他引:1  
NK—33液氧/煤油火箭发动机是由萨莫拉国家科研生产联合体——“TRUD”为俄罗斯N—1登月火箭研制生产的。这种四级型的 N—1火箭所使用的发动机均为液氧/煤油火箭发动机,其中30台 NK—33发动机用于第一级,8台与 NK—33发动机类似而面积比更大的 NK—43发动机用于第二级,四台 NK—39发动机用于第三级,一台除带有常平座外类似于 NK—39发动机的 NK—31发动机用于第四级。所有上述的液氧/煤油发动机都是六十年代研制的,均采用一个富氧预燃室产生涡轮燃气,气氧与热煤油经过分级燃烧喷注器在8.964~15.169MPa 绝压下燃烧。NK—33、NK—43和 NK—39发动机可控制发动机簇的推力,并提供火箭的推力向量控制。由于采用高室压,NK—33发动机的设计实现了较高的性能和很轻的结构重量。富氧预燃室的采用,使得发动机有较高的燃烧效率和燃烧稳定性。在预燃室中,全部的液氧以58:1的混合比燃烧,所产生的628.15K 的富氧燃气全部用来驱动涡轮泵的涡轮,然后进入喷注器和燃烧室。NK—33发动机的结构牢固可靠,可实现很高的泵出口压力和14.480MPa 绝压的高燃烧室压力,因此,其面积比可达27:1,可产生2913.57m/s 的海平面比冲和3274.1m/s 的真空比冲。气氧和热煤油喷注器可保证发动机推力降至23%推力水平时仍能稳定燃烧。各次试车之间,无需使用溶解剂清洗 NK—33发动机的零件,也没有发动机零件的碳化现象,这是由于取消了富燃料气发生器和降低推力室冷却套中的煤油温度的缘故。NK—33发动机在用于飞行计划以前进行了充分的试验,共进行了910多次试车,累积点火时间达211,800秒。研制和鉴定完成后,先后共交付了250台 NK—33发动机,可靠性指标达到0.996。已经证实,NK—33发动机是一种高性能的助推发动机。它结构牢固可靠;所采用的技术,到目前为止,未见于美国的发动机。NK—33发动机可凭借低成本和高飞行可靠性改进运载火箭的性能。  相似文献   

19.
洛克希德导弹空间公司计划采用杜邦公司的低密度、高强度、高模量PRD——49——Ⅲ纤维,研制一种三叉戟Ⅰ(C_4)导弹第三级所需的高性能纤维缠绕燃烧室,计划分三步进行:(1)确定材料的基本性能的特性数据;(2)用小尺寸的燃烧室试验来评定设计和制造设想;(3)用全尺寸壳体的爆破和结构试验来验证和确定设计与制造技术。本文提供了材料的基本性能以及小尺寸和全尺寸壳体的数据,数据证实了PRD—49—Ⅲ纤维燃烧室要比S—901玻璃纤维燃烧室轻35%,且复合材料的环向模量增加70%。  相似文献   

20.
增强大推力火箭发动机燃烧稳定性裕度的方法   总被引:2,自引:0,他引:2  
针对重型运载大推力液体火箭发动机自发激励高频燃烧不稳定性的技术风险,总结和分析了影响大推力液氧煤油火箭发动机燃烧稳定性裕度的因素,主要包括燃烧室声学固有频率、燃烧室结构和喷嘴几何结构。结果表明:发动机喷注器附近的推进剂燃烧区、燃烧室收敛段对燃烧室声学固有频率有较大影响;燃烧室长度为燃烧室直径的0.205倍或0.205的奇数倍时有相对最好的燃烧稳定性;气液同轴式喷嘴长度为燃烧室一阶切向振荡频率的0.5倍时,能传递最大的振荡能量。最后,提出了一种增强燃烧稳定性裕度、避免出现切向振型高频燃烧不稳定性的燃烧室设计方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号