首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The positive ion composition and electron density were measured in the lower ionosphere above Kiruna in salvo A of CAMP (Cold Arctic Mesopause Project). The CAMP/P (S37/P) payload carrying a magnetic ion spectrometer, positive ion and electron probes, and propagation experiments was launched on 3 August 1982 2332 UT during extended Noctilucent Clouds (NLC) and auroral activities over Kiruna. The measured electron density was 5×103cm?3 at 80 km and 2.5×105cm?3 at 90 km. The increase of ion and electron densities in the D- and E-region during twilight was caused by precipitating auroral particles. The height distribution of the positive ions measured by the mass spectrometer in the mass range 19–280 amu is different from a winter flight with similar auroral conditions. Below 85.5 km proton hydrates H+(H2O)3 ? H+(H2O)8 were the dominant ions. The heaviest proton hydrates H+(H2O)7 and H+(H2O)8 were most abundant at 82–85.5 km, the altitude of visible NLC. Above 85.5 km O2+ and NO+ became dominant. A small metal ion layer was observed between 90.5–93 km with a maximum ion density of 10% of the total positive ion density at 91 km altitude. The metal ion density disappeared within about a km below 90.5 km.  相似文献   

2.
We examine the systematic differences between topside electron density measurements recorded by different techniques over the low-middle latitude operating European station in Nicosia, Cyprus (geographical coordinates: 35.14oN, 33.2oE), (magnetic coordinates 31.86oN, 111.83 oE). These techniques include space-based in-situ data by Langmuir probes on board.European Space Agency (ESA) Swarm satellites, radio occultation measurements on board low Earth orbit (LEO) satellites from the COSMIC/FORMOSAT-3 mission and ground-based extrapolated topside electron density profiles from manually scaled ionograms. The measurements are also compared with International Reference Ionosphere Model (IRI-2016) topside estimations and IRI-corrected NeQuick topside formulation (method proposed by Pezzopane and Pignalberi (2019)). The comparison of Swarm and COSMIC observations with digisonde and IRI estimations verifies that in the majority of cases digisonde underestimates while IRI overestimates Swarm observations but in general, IRI provides a better topside representation than the digisonde. For COSMIC and digisonde profiles matched at the F layer peak the digisonde systematically underestimates topside COSMIC electron density values and the relative difference between COSMIC and digisonde increases with altitude (above hmF2), while IRI overestimates the topside COSMIC electron density but after a certain altitude (~150 km above hmF2) this overestimation starts to decrease with altitude. The IRI-corrected NeQuick underestimates the majority of topside COSMIC electron density profiles and relative difference is lower up to approximately 100 km (above the hmF2) and then it increases. The overall performance of IRI-corrected NeQuick improves with respect to IRI and digisonde.  相似文献   

3.
Simultaneous measurements taken by instruments on the Atmosphere Explorer - C satellite were used to compare electron and proton particle energy deposition, Joule heating, and neutral density perturbations in the region of the cusp.Altitude profiles of Joule heating, electron energy deposition, and electron density are derived using measurements taken by the satellite as input to a computer model. Electric fields are calculated using ion drift measurements. Figures are presented for a representative orbital pass.A peak Joule heating rate of 0.059 Wm?2 occurred in the cusp region with a peak of 0.025 Wm?2 in the evening auroral electrojet. Peak volume heating rates corresponding to these regions were 1.4 × 10?6Wm?3 and 7.10?7 Wm?3, both occurring at an altitude of 115 km. Particle energy deposition was about an order of magnitude less than Joule heating. Large neutral density perturbations are related to regions of heating.  相似文献   

4.
A radio holographic approach, developed by Pavelyev (1998), Hocke (1999), Igarashi (2000), is applied to observation of wave phenomena in the upper atmosphere using Global Positioning System — “Microlab-1” satellite (GPS/MET) radio occultation data. In the current state the radio holography approach uses the radar focused synthetic aperture principle to obtain high spatial resolution, and to remove the interference part corresponding to scattering from the upper ionosphere. High spatial resolution and accuracy of the radio halographic method is validated by means of revealing the weak signal reflected from the sea in the GPS/MET radio occultation data. The radio holographic method gives a new possibility to measure directly the vertical gradient of the electron density altitude profile in the D-layer using the radio occultation signal. The results of the application of radio holographic analysis to two GPS/MET occultation events (07 February 1997, No. 0447, 0158), in the D-region of the ionosphere, are discussed. Wave structures in the electron density concentration with a vertical spatial period of 1.4–6 km, and variations in the electron density gradient from ±5·109 to ±8·109 [1/(m3km)], have been retrieved from the D-layer data. The features observed in the vertical electron density profiles may be connected with breaking of gravity waves in the D-layer of the ionosphere.  相似文献   

5.
It is shown in this paper for the first time that the intensity of the daytime thermospheric O(1D) 630.0 nm airglow as measured by the ground-based dayglow photometer over Trivandrum (8.5°N; 77°E; dip lat. 0.5°N), a geomagnetic dip equatorial station, exhibit a direct correlation with the electron density at 180 km. This altitude is about ∼40 km lower than the believed centroid of the O(1D) 630.0 nm dayglow emission i.e. 220 km. This observation is contrary to the understanding of the behavior of O(1D) 630.0 nm dayglow over equatorial/low latitudes. Over these latitudes, the variations of the measured intensity of O(1D) 630.0 nm dayglow are known to be associated with the changes in the electron density at altitudes around 220 km, the centroid of this emission. In this context, the present results indicating the lowering of the peak altitude of O(1D) 630.0 nm emission from ∼220 to ∼180 km over the dip equator is new. Recent results on solar XUV flux indicate that this could be an important parameter that controls the O(1D) 630.0 nm dayglow excitation rates through modulations in the neutral and ionic composition in lower thermosphere-ionosphere region. However, the lowering of the centroid of O(1D) 630.0 nm emission, as shown in this study, has been ascribed primarily to the fountain effect associated with the equatorial ionization anomaly.  相似文献   

6.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

7.
A study on the variability of the equatorial ionospheric electron density was carried out at fixed heights below the F2 peak using one month data for each of high and low solar activity periods. The data used for this study were obtained from ionograms recorded at Ilorin, Nigeria, and the study covers height range from 100 km to the peak of the F2 layer for the daytime hours and height range from 200 km to the peak of the F2 layer for the nighttime hours. The results showed that the deviation of the electron density variation from simple Chapman variation begins from an altitude of about 200 km for the two months investigated. Daytime minimum variability of between 2.7% and 9.0% was observed at the height range of about 160 and 200 km during low solar activity (January 2006) and between 3.7% and 7.8% at the height range of 210 and 260 km during high solar activity (January 2002). The nighttime maximum variability was observed at the height range of 210 and 240 km at low solar activity and at the height range of 200 and 240 km at high solar activity. A validation of IRI-2007 model electron density profile’s prediction was also carried out. The results showed that B0 option gives a better prediction around the noontime.  相似文献   

8.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

9.
We present a detailed study of the distribution and of the internal structure of the inverted-V electron precipitation commonly detected in the 500 – 2000 km altitude range aboard the AUREOL-3 satellite. These structured precipitations are statistically observed inside the auroral oval with a maximum occurence in the nightside sector. They correspond to primary electron fluxes peaked at energies generally below 10 keV. It is shown that, as predicted by kinetic theories, most inverted-V structures present a clear relationship between the field-aligned current density carried by the 1 – 20 keV primary electrons and the potential drop inferred from particle distribution functions. Furthermore the study demonstrates the existence of strong electron heating, related to the energy gain, when the current density exceeds some threshold of about 1 – 5 μA(m)?2.  相似文献   

10.
In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter–receiver great circle path (TRGCP) during local noon time 00:36–03:13 UT (09:36–12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h′) in km and inverse scale height parameter (β) in km−1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km−1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.  相似文献   

11.
Four versions of a steady-state quiet D-region model are presented. They differ from each other as a result of latitudinal differences in total neutral particle concentrations, nitric oxide concentrations and cosmic ray ionization rates. The total ion concentration profiles of all four versions have minima near 70 km which range from about 108 m?3 at high latitudes to 3.5 × 107 m?3 at equatorial latitudes for a solar zenith angle of 60°. Neutral density differences among the four cases result in important vertical shifts for the respective D-region profiles relative to one another. A “C-layer” is evident for the high and mild-latitude models at large solar zenith angles. The altitude where the negative ion/electron concentrations ratio is unity varies from about 63 to 67 km. The computed results are compared briefly with the extensive data base in the literature.  相似文献   

12.
Our empirical model of electron density (ne) for quiet and weakly disturbed geomagnetic conditions (Kp not greater 4) takes account of comparative analysis of existing models and of experimental data obtained by rockets and incoherent scatter radar. The model describes the ne distribution in the 80 to 200 km height range at low and middle latitudes, and to some extent, in the subauroral region. It is presented in analytical form thus allowing one to calculate electron density profiles for any time. The electron density distribution at 140 km depends on the season (day of the year) and on the solar zenith angle. Profile variations during the day are for one season shown. Different from other models, ours specifies the variations during sunrise and sunset and reflects the particular profile shape at night admitting the occurrence of an intermediate layer.  相似文献   

13.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

14.
985 whistlers observed between 1970 and 1975 in Hungary have been processed for equatorial plasmaspheric electron density and tube electron content above 1000 km (NT). The hourly median value of NT exhibits a diurnal variation with an amplitude of 1×1013 electrons/cm2-tube. 75 per cent of the electron flux values obtained from the time variation of NT are lower than 6×108 el cm?2s?1, while in some cases the fluxes reach a value as high as 3×109 el cm?2s?1. Between 17 and 04 LT the dominant flux direction is toward the ionosphere. The data also indicate that the day to day filling of the plasmasphere after magnetic disturbances continues through several days without exhibiting saturation, with higher filling rates for lower values of average Kp.  相似文献   

15.
The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, presents global electron density profiles and total electron content, TECiri, up to the altitude of the GPS satellites (20,000 km). The model code is modified by input of GPS-derived total electron content, TECgps, so that the topside scale height, Hsc, is obtained minimizing in one step the difference between TECiri and TECgps observation. The topside basis scale height, Hsc, presents the distance in km above the peak height at which the peak plasma density, NmF2, decays by a factor of e (∼2.718). The ionosonde derived F2 layer peak density and height and GPS-derived TECgps data are used with IRI-Plas code during the main phase of more than 100 space weather storms for a period of 1999–2006. Data of seven stations are used for the analysis, and data from five other stations served as testing database. It is found that the topside basis scale height is growing (depressing) when the peak electron density (critical frequency foF2) and electron content are decreased (increased) compared to the median value, and vice versa. Relative variability of the scale height, rHsc, and the instantaneous Hsc are inferred analytically in a function of the instantaneous foF2, median fmF2 and median Hmsc avoiding a reference to geomagnetic indices. Results of validation suggest reliability of proposed algorithm for implementation in an operational mode.  相似文献   

16.
The Vega-1 and Vega-2 wave and plasma measurements performed on 6 and 9 March 1986 in the environment of comet Halley present similar characteristics. Field spectral intensity of up to 5 mVm?1Hz?12 at 300 Hz is measured at closest approach; enhanced signals are detected in the whistler mode and in the vicinity of the lower hybrid resonance frequency within respective average distances of 130,000 km and 60,000 km from the nucleus. The plasma density rises from 100 cm?3 at 200,000 km up to 3000 cm?3 at 25,000 km. The spacecraft potential is of the order of +3 V beyond a distance of 200,000 km and decreases to about +0.5 V at 8,000 km.  相似文献   

17.
The stellar occultation technique is a clean and powerful means of detecting and quantifying minor gases in the earth's atmosphere. The results obtained are totally insensitive to knowledge of the absolute flux of the star, and are not influenced by instrument calibration problems. Pioneering observations of nocturnal mesospheric ozone and thermospheric molecular oxygen by the stellar occultation technique were made in 1970 and 1971 with the Wisconsin stellar photometers on board the Orbiting Astronomical Observatory-2. A limb crossing geometry was used. The high resolution Princeton ultraviolet spectrometer aboard Copernicus was used in the summers of 1975, 1976 and 1977 to measure altitude profiles of molecular hydrogen, atomic chlorine and nitric oxide in addition to ozone and molecular oxygen. A limb grazing geometry was employed. The ozone densities show wide variation from orbit to orbit and particularly betewen the OAO-2 and Copernicus observations. A H2 density of 1×108 cm?3 at 95 km, and a NO density less than 106 cm?3 for altitudes greater than 85 km were measured.  相似文献   

18.
An empirical model of electron density (Ne) was constructed by using the data obtained with an impedance probe on board Japanese Hinotori satellite. The satellite was in circular orbit of the height of 600 km with the inclination of 31 degrees from February 1981 to June 1982. The constructed model gives Ne at any local time with the time resolution of 90 min and between −25 and 25 degrees in magnetic latitude with its resolution of 5 degrees in the range of F10.7 from 150 to 250 under the condition of Kp < 4. Spline interpolations are applied to the functions of day of year, geomagnetic latitude and solar local time, and linear interpolation is applied to the function of F10.7. Longitude dependence of Ne is not taken into account. Our density model can reproduce solar local time variation of electron density at 600 km altitude better than current International Reference Ionosphere (IRI2001) model which overestimates Ne in night time and underestimates Ne in day time. Our density model together with electron temperature model which has been constructed before will enable more understanding of upper ionospheric phenomenon in the equatorial region.  相似文献   

19.
This paper discusses photometric measurements made of the ionospheric excitation of the line λ = 5577A? at the time of electron beam injection from a rocket into the Earth's ionosphere. The gradual increase of the glow intensity per impulse occurs due to accumulation of the energy of excited states of N2(A3Σ+u) and O(′S) during their lifetimes. The large disturbed zone in the near-rocket environment (size >500 m) is connected via the interaction of ions accelerated in the rocket potential field with ionospheric components. The glow intensity modulation is observed at a height of ~98 km during the electron beam injection simultaneously with the ignition of the beam-plasma discharge (BPD). The intensity minima are explained by a decrease of the energy of accelerated ions due to effective neutralization of the rocket body by the BPD plasma. The height profile of the glow intensity revealed two maxima at heights of ~103 km and ~115 km. The second maximum (at ~115 km) indicates that, at these heights, both collision and collision-free mechanisms of accelerated ion energy transport to ionospheric components exist.  相似文献   

20.
A panoramic view of the nightglow atmospheric emission in the 780–1000 nm spectral range is constructed using CCD images taken at the Pic de Châteaurenard (Altitude 2989 m, Hautes-Alpes) on July 14–15, 1999. A set of 28 images each having a 36° × 36° field of view is assembled to form a panorama covering 360° in azimuth and extending from the horizon to the zenith. Each photograph is processed in order to invert the perpective effect assuming that the emission comes from a thin layer located at the altitude of 85 km. The effect of refraction is calculated and taken into account. The stars are removed using a numerical filter. The inverted panorama appears as a disk having a radius equal to 1100 km. It is comparable to a satellite view of the emissive layer. A wave system extends in the W-NW to E-SE direction over more than 2200 km. A second set of 30 successive images of the same field of view taken on May 18–19, 1998 is used to determine the wave parameters. The main horizontal wavelength is equal to 42 km and the horizontal phase velocity has a value of 40 ± 2 m.s−1. The images show that the atmospheric OH emission is a tracer of the dynamics of the atmosphere at the level where the excited OH radicals are produced. The OH* radical population depends upon its quenching by O, O2 and N2. As a result, the emission intensity is a function of the air temperature and density which are subject to variations due to gravity and windshear waves and other dynamic processes such as tides and turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号