首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of high energy particles, specifically cosmic rays, on atmospheric physics and chemistry is highly discussed. In most of the proposed models the role of ionization in the atmosphere due to cosmic rays is not negligible. Moreover, effect(s) on minor constituents and aerosols are recently observed, specifically over the polar regions during strong solar particle events. According to the recent findings for such effects it is necessary an essential increase of ion production, specifically during the winter period. The galactic cosmic rays are the main source of ionization in the Earth’s stratosphere and troposphere. Occasionally, the atmospheric ionization is significantly enhanced during strong solar energetic particles events, specifically over the polar caps. During the solar cycle 23 several strong ground level enhancements were observed. One of the strongest was the Bastille day event occurred on 14 July 2000. Using a full Monte Carlo 3-D model, we compute the atmospheric ionization, considering explicitly the contribution of cosmic rays with galactic and solar origin, focusing on high energy particles. The model is based on atmospheric cascade simulation with the PLANETOCOSMICS code. The ion production rate is computed as a function of the altitude above the sea level. The ion production rate is computed on a step ranging from 10 to 30?min throughout the event, considering explicitly the spectral and angular characteristics of the high energy part of solar protons as well as their time evolution. The corresponding event averaged ionization effect relative to the average due to galactic cosmic rays is computed in lower stratosphere and upper troposphere at various altitudes, namely 20?km, 15?km, 12?km and 8?km above the sea level in a sub-polar and polar regions. The 24h and the weekly ionization effects are also computed in the troposphere and low stratosphere. Several applications are discussed.  相似文献   

2.
The radiation environment in the troposphere of the Earth is governed by cosmic rays of galactic and solar origin. During major solar energetic particles events the radiation environment changes dramatically. As a results the risk of biological effects due to exposure to ionizing radiation of aircrew increases. Here we present a numerical model for computation of absorbed dose in air due to cosmic rays of galactic and solar origin. It is applied for computation of radiation environment at flight altitude in the equatorial region during several major ground level enhancements, namely GLE65 on 28 October 2003, GLE69 on 20 January 2005 and GLE70 on 13 December 2006. The model is based on a full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The cascade simulation is carried out with CORSIKA 6.990 code with corresponding hadron generators FLUKA 2011 and QGSJET II. The contribution of different cascade components, namely electromagnetic, hadron and muon is explicitly obtained. The spectra of arriving solar energetic particles are calculated from ground level measurements with neutron monitors and satellite data from GOES. The obtained results are discussed.  相似文献   

3.
The cosmic ray ionization source functions which were obtained using a simplified extensive air shower model are used to calculate the eleven year cycle, seasonal and diurnal variations of ionization rate in the low and middle atmosphere. The ionization source function, as a function of the penetrating depth and the energy of cosmic ray particles, is the ionization rate per unit depth for a unit flux of incoming cosmic ray particles with certain energy.The calculation of the eleven year cycle variation of ionization rate in the low and middle atmosphere due to the modulation of galactic cosmic ray intensity by solar activity shows that the amplitude is larger at a higher magnetic latitude and is generally larger at higher altitudes. The relative amplitude of fluctuation of the ionization peak value (at altitudes near 15 km) is up to 45% in the magnetic polar region. The ionization rate, due to the seasonal variation of the atmospheric density, varies from several per cent below the ionization peak to several tens per cent above the peak. This seasonal variation of ionization rate reaches 35% at 70 km. The diurnal variation of atmospheric densities caused by atmospheric tidal oscillation can produce a diurnal variation of the ionization rate to an amplitude of several per cent at altitudes above 40 km. The diurnal oscillation is less than 1% below 35 km.  相似文献   

4.
Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.  相似文献   

5.
The main point of the paper is to use the simultaneous measurements of the energetic particle flux by TriTel and those of electron density by a Langmuir probe to study the question of to what extent solar electromagnetic and corpuscular radiation (galactic cosmic rays, particle precipitation from the radiation belts) are responsible for the ionization of the atmosphere. The electron density measured by the Langmuir probe is the sum of the ionization produced by the solar electromagnetic radiation and that due to the corpuscular radiation. The ionization produced by the solar electromagnetic radiation may be computed. The flux of energetic particles in an energy range may be determined by taking the difference between the threshold energy of the TriTel telescopes and the energy corresponding to the local cut-off rigidity. As the ESEO satellite will have a quasi-polar and circular orbit, the cut-off rigidity will change from low to high latitudes, thus enabling the assignment of different energy bands for the telescopes. Thus, it will be possible to determine which energy bands of particle produce ionization at different latitudes.  相似文献   

6.
Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations to spectral fitting, geomagnetic activity and other assumptions demonstrates the requirement for widespread carriage of radiation monitors on aircraft.  相似文献   

7.
分析了日本Nagoya 宇宙线闪烁体望远镜30°, 49°, 64° 倾角的东、西、南、北方向探测数据的变化特点, 运用小波分析方法定性地探讨了磁暴前后宇宙线南北、东西各向异性的变化特征. 研究发现, 当发 生大地磁暴时, 地面宇宙线强度的各向异性特征将发生非常大的变化, 这种变化一般在磁暴发生前10~20 h就开始出现. 当描述这种各向异性特征的各向异性指数的小波系数变化达到一定阈值时, 就可能有大地磁暴发生.   相似文献   

8.
In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.  相似文献   

9.
High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude.  相似文献   

10.
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.  相似文献   

11.
对利用蒙特卡罗方法对由银河宇宙射线引起的空间辐射场各成分进行计算的方法进行了调研,对计算模型的建立以及计算过程中通常使用的方差减小技术进行分析,给出了美国的Roesler等人利用FLUKA程序以及加拿大Anid等人利用MCNPX程序计算得到的由银河宇宙射线引起的空间辐射场各量值及其与实验结果的比较,验证了计算方法与计算模型的可靠性。对任意航线空间辐射场剂量分布预评估方法进行分析,给出了由银河宇宙射线引起的空间辐射场的基本特征。  相似文献   

12.
From 1 January 1986 through 1 January 2008, GOES satellites recorded 170 solar proton events. For 169 of these events, we estimated effective and equivalent dose rates and doses of galactic cosmic radiation (GCR) and solar cosmic radiation (SCR), received by aircraft occupants on simulated high-latitude flights. Dose rate and dose estimates that follow are for altitudes 30, 40, 50, and 60 kft, in that order.  相似文献   

13.
A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity – known as Forbush decreases – will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor’s data usage.  相似文献   

14.
The two components of the space radiation environment, galactic cosmic rays and solar energetic particles, are of special importance for the planning of space missions and designing space vehicles for flights in the inner heliosphere. There is a constant need for developing and updating the models for calculating the fluxes of these particles for purposes of forecasting radiation conditions anticipated for future flights, including missions to the Moon and Mars.  相似文献   

15.
We report the first 3+1 dimensional model development for energetic atomic oxygen ions in the Earth's radiation belts. Energetic Oxygen ions cans be supplied to the Earth's Inner magnetosphere from the sun (as a component of solar wind and solar energetic particles), from anomalous cosmic rays, and from acceleration processes acting on ionospheric atomic oxygen ions. We have built a multi-dimensional oxygen ion model in the following free parameters: geomagnetic L-shell, the magnetic moment, the second adiabatic invariant, and the discrete charge state number. Quiet time, steady state oxygen ion distributions have been obtained numerically from an assumed outer radiation zone boundary condition at L=7, average values of the radial diffusion coefficients, and standard values for the exospheric neutral densities due to the MSIS-86 upper atmosphere and exosphere neutral thermal particle density model. Average distributions of free electrons in the plasmasphere were also assumed with a mean plasmapause location just beyond L=4. We included the six lowest ionic charge states of atomic oxygen (16O) based on an existing charge exchange cross section compilation by Spjeldvik and Fritz (1978). Computed oxygen ion distributions include the resulting equilibrium structure of energy oxygen ions between 10 KeV and 100 MeV.  相似文献   

16.
We have developed a method to evaluate the spectrum of solar energetic protons at the top of the Earth’s atmosphere from the measurements of our balloon cosmic ray experiment. By using the Monte Carlo PLANETOCOSMICS code based on Geant4 we compute the interaction of solar protons [10 MeV–10 GeV] with the Earth’s atmosphere. We obtain the angular and energy distributions of secondary particles (p, e, e+, photons, muons) at different atmospheric levels as a function of primary proton spectra. By comparing the calculated depth dependence of the particle flux with the data obtained by our balloon experiment we can deduce the parameters of the solar proton spectrum that best fit the observations. In this paper we discuss our solar proton spectrum estimation method, and present results of its application to selected solar proton events from 2001 to 2005.  相似文献   

17.
The transport properties of galactic cosmic rays (GCR) in the atmosphere, material structures, and human body (self-shielding) are of interest in risk assessment for supersonic and subsonic aircraft and for space travel in low-Earth orbit and on interplanetary missions. Nuclear reactions, such as knockout and fragmentation, present large modifications of particle type and energies of the galactic cosmic rays in penetrating materials. We make an assessment of the current nuclear reaction models and improvements in these model for developing required transport code data bases. A new fragmentation data base (QMSFRG) based on microscopic models is compared to the NUCFRG2 model and implications for shield assessment made using the HZETRN radiation transport code. For deep penetration problems, the build-up of light particles, such as nucleons, light clusters and mesons from nuclear reactions in conjunction with the absorption of the heavy ions, leads to the dominance of the charge Z = 0, 1, and 2 hadrons in the exposures at large penetration depths. Light particles are produced through nuclear or cluster knockout and in evaporation events with characteristically distinct spectra which play unique roles in the build-up of secondary radiation's in shielding. We describe models of light particle production in nucleon and heavy ion induced reactions and make an assessment of the importance of light particle multiplicity and spectral parameters in these exposures.  相似文献   

18.
本文利用太阳能量粒子事件中重离子平均丰度过量的资料,计算得到太阳能量粒子源物质的温度,提出了描述太阳宇宙线能量粒子源物质的新模式——高色球层模式;太阳耀斑观测确定,太阳宇宙线耀斑的加速区一般最可能出现在低日冕甚至高达几万公里的高度,从而,太阳宇宙线的源和加速区通常不位于同一区域;进而提出了描述太阳能量粒子事件中重离子丰度过量的可能机制——其源物质是通过太阳黑子的冻结型无力场从高色球层输送到活动区,形成耀斑前加速区内重离子丰度大和耀斑后宇宙线中重元素丰度的过量.   相似文献   

19.
Be-7 radioactive nuclei with a half-life of 53.3 days result from spallation reactions of galactic cosmic rays(GCR) and solar energetic particles (SEP) with N and O nuclei in the Earth's atmosphere. We calculate the average global production of Be-7 in the atmosphere by GCR and SEP The result indicates that an intense SEP event produces a large amount of Be-7 in the polar stratosphere and part of them could be transported to the surface at lower latitudes. The ground-level measurement of Be-7 in Japan exhibits the possibility of enhancement in the Be-7 radioactivity associated with the intense SEP event on July 14, 2000. In addition, the present experiment shows seasonal variations in the surface Be-7 concentration which peaks in spring and autumn. We discuss the possible air mass mixing between the stratosphere and troposphere to explain the measured seasonal variations. The surface concentration of Pb-210 nuclei indicates a similar trend to that of Be-7 and we suggest two possible explanations.  相似文献   

20.
The state of art of ground-based cosmic-ray research from its discovery to present is reviewed. After discovery of cosmic rays by Hess in 1912, the nature of the primary and secondary radiation was established from recordings by a variety of instruments, sensitive to various components of cosmic rays and operated at different latitudes, longitudes and altitudes, including instruments carried by balloons. The IGY formalized international co-operation and coordinated study of cosmic rays, which is vital for meaningful interpretation of cosmic-ray data. Data collected at different geographic locations require an effective cutoff rigidity as a data ordering parameter. This parameter is obtained from tracing trajectories of primary cosmic rays in the Earth’s magnetic field. After 50 years the world’s neutron monitor network remains still the backbone for studying intensity variations of primary cosmic rays in the rigidity ranges between 1 and 15 GV, associated with transport and with transient events. Also the penetrating muon and neutrino components of secondary cosmic rays have a long history of recording and fundamental problem investigations. Valuable data about composition and spectrum of primary cosmic rays in ever increasing high-energy regions have been obtained during the years of investigations with various configurations and types of extensive air shower detectors. The culture of personal involvement of the physicist in carrying out experiments and data acquisition characterized the continued vitality of cosmic-ray investigations ranging from its atmospheric, geomagnetic and heliospheric transport through to its solar and astrophysical origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号