首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
冲击刮削法评价封严涂层的可磨耗性   总被引:6,自引:0,他引:6  
利用研制成功的新型电子冲击刮削试验机可较好地模拟航空发动机叶片刮削封严涂层的工况,测试涂层冲击刮削载荷-位移曲线及刮削功等。用刮削单位体积涂层所消耗的功评价涂层的可磨耗性。对某类涂层随涂层硬度增加,刮削功上升并有一阈值,以此值可确定生产中检验硬度范围的上限。对于相近硬度的涂层在相同条件下,313类涂层的刮削功小,可磨耗性较好,601类次之,307类较差。300℃试验时,刮削功下降,但不同类型的涂层下降幅度不同。  相似文献   

2.
介绍了发动机高压涡轮外气路封严结构设计思路及相应的试验结果。试车证明:结构设计合理,封严涂层抗剥落性能良好,可磨耗性比原陶瓷封严涂层有所提高,可满足高压涡轮外气路封严技术要求。  相似文献   

3.
纳米Y-PSZ基材料高温封严涂层的研制   总被引:4,自引:1,他引:3  
前期探讨高温环境使用的封严涂层。研制出可磨耗封严涂层材料,以纳米Y-PSZ为基相材料,添加定量的高温软相和造孔组分,获得一种添加相分布均匀,组织细小松软的团聚型封严涂层材料粉末。并成功采用APS在试验基体上制备出≥1.0mm厚的涂层。对涂层组织、表面洛氏硬度、附着强度进行检测,并初步讨论相关性能。结果表明,研制的涂层硬度保持在HR45Y 30~55,并且孔隙率控制在30%的涂层具有适宜的结合强度和硬度,能够满足使用时的硬度和结合强度要求。  相似文献   

4.
可磨耗封严涂层的冲蚀磨损特性及模型   总被引:4,自引:0,他引:4  
抗冲蚀性是可磨耗封严涂层最重要的性能。在自制的真空自由落砂试样旋转式冲蚀磨损试验机上对几种中温封严涂层的冲蚀磨损特性及机理进行了研究。实验结果表明,冲蚀失重与冲蚀时间具有良好的线性关系;在60°时冲蚀率最大;冲蚀率与冲蚀速度有幂函数关系,速度指数随冲蚀角度增大而增大;90°冲蚀时,涂层的冲蚀机理为冲击粒子在涂层表面冲击挤压,产生凹坑和凹坑边缘凸起的唇片,随后的冲蚀使唇片流失;粒子的不断冲击使表层金属相松动,导致呈颗粒状剥落。30°冲蚀时涂层的冲蚀机理为切削、犁削并有孔洞、非金属相贯通效应。在此基础上提出了封严涂层的冲蚀磨损模型。  相似文献   

5.
对某型航空发动机高压涡轮转子叶片通过相似变换得到的低速叶型进行研究,探讨叶尖机匣相对运动条件下,叶顶喷气对凹槽叶尖气动性能的影响。结果表明:叶顶喷气对平叶尖的气动性能影响有限,但会降低凹槽叶尖效率;在相同喷气条件下,使用凹槽叶尖相比于使用平叶尖可降低20%的叶尖泄漏损失;泄漏流在凹槽内部的能量耗散主要来自于泄漏流动与凹槽涡和刮削涡的相互作用,在喷气条件下,刮削涡仍然是泄漏流动的主要控制结构。喷气位置对凹槽叶尖性能有显著的的影响;在靠近吸力侧和前缘布置喷气孔,有利于凹槽气动性能的提升;基于以上研究,建立可用于凹槽叶尖的泄漏流动损失模型,新模型相比Denton模型误差降低了31.6%。   相似文献   

6.
可磨耗封严涂层研究进展   总被引:4,自引:0,他引:4  
可磨耗封严涂层是一种重要的热喷涂涂层,广泛应用于飞机发动机,对提高发动机效率、降低油耗进而提升发动机整体性能具有重要意义.本文介绍了可磨耗封严涂层材料的主要种类及其发展趋势,阐述了可磨耗封严涂层性能评价方法.  相似文献   

7.
可磨耗封严涂层及其性能评价   总被引:10,自引:0,他引:10  
介绍航空发动机可磨耗封严材料的特性、现状及其发展;评述可磨耗封严涂层性能评价的研究现状。  相似文献   

8.
鸟撞发动机在鸟撞事故中最容易造成飞机损坏失事的情况,为了研究发动机一级压气机转子抗鸟撞适航性能,对发动机转子在工作状态下进行鸟撞试验,鸟体质量为1 000 g,撞击速度为195 m/s,发动机一级转子转速为8 525 r/min;基于显式碰撞动力分析软件PAM-CRASH 建立相应的叶片鸟撞数值计算模型,通过与试验结果的对比来验证本文计算模型的合理性;根据发动机适航条例分析不同工况下发动机一级转子抗鸟撞性能。结果表明:大鸟撞击相比于中鸟鸟群和小鸟鸟群,对于叶片的撞击结果更加恶劣;叶尖位置撞击会引起叶尖部位的大变形,叶根和叶中位置撞击会引起叶片根部较大的集中应力,导致叶片断裂。  相似文献   

9.
涡轮转子凹槽叶尖泄漏流动气动热力特征   总被引:3,自引:2,他引:1       下载免费PDF全文
为探索总结凹槽叶尖泄漏流动气动热力特征,利用实验和数值模拟方法,对叶尖凹槽内部旋涡相互作用机理和叶顶流动换热与泄漏流能量再分布等问题进行研究,并对凹槽叶尖参数化设计方法进行探讨。结果表明:搭建的考虑多因素实验台和可视化泄漏流动测量方案可以精确地捕捉到叶顶区域的流动结构;刮削涡在凹槽中起到"气动篦齿"作用,其形态特征的变化直接影响凹槽叶尖对泄漏流动的控制效果;高温泄漏流流体对叶片表面的冲击是叶尖热负荷提高的主要原因;合理选择叶尖气动参数和凹槽的几何参数可以有效控制刮削涡形态,最终提升叶尖气动热力性能。  相似文献   

10.
通过分析某型航空发动机涡轮叶片表面涂覆的Al Si Y涂层使用环境和防护要求,针对Al Si Y涂层进行氧化和非氧化的对比试验,以及模拟汗液的常温抗腐蚀性试验,并在模拟试验后对试样叶片进行发动机不同温度段的高温抗氧化性试验,检测高温抗氧化性试验前后试样叶片的失重情况,从理论、试验、实际应用等三个方面进行评估,针对Al Si Y涂层进行氧化处理防护的可行性研究。  相似文献   

11.
李磊  张俊  蔡歆 《航空动力学报》2017,32(9):2260-2264
主要介绍了电容式叶尖间隙测量系统的各组成部分,间隙测量设备在离心压气机试验件上的安装方式和标定方法。通过对离心压气机试验件的叶尖间隙进行实时监测, 获得了离心叶轮进口、中间和出口截面叶尖间隙随转速增加而减小的关系,保证了试验的安全性和试验件的完整性。分析叶尖间隙和转速关系可以为后续减小叶尖的冷态间隙和优化离心叶轮叶尖流道和叶轮外罩流道提供试验数据支持,叶尖间隙测量技术在离心压气机试验件上的应用为确定最佳的叶轮间隙及以后的型号研制提供了重要的数据支持。   相似文献   

12.
Abradable seal rubber has been widely used in aero-engine fans to improve their efficiency by reducing the clearance between rotating and stationary components. To investigate the high-speed scraping behavior between a vulcanized silicone rubber and a Ti-6Al-4V fan blade and evaluate the abradable performance of seal rubber, abrasion tests were conducted at a blade tip velocity of 50–300 m/s with an incursion rate of 100 lm/s. The influences of the blade tip velocity on the wear mechanism and interaction forces were specially analyzed. It is shown that abrasive wear and pattern wear are the predominant wear mechanisms, and pattern wear can be seen as the emergence and propagation of cracks. With an increase of the blade tip velocity, both of the final incursion depth and wear mass loss of seal rubber exhibit growth trends. The gradual changes of rubbing forces with an increase of rubbing time are the characteristic of abrasive wear, and force curves with unstable mutations are a reflection of pattern wear. At a constant incursion rate of 100 lm/s, the maximum values of interaction forces decrease first and then grow with an increase of the blade tip velocity, and the blade tip velocity of 150 m/s becomes the cut-off point between abrasive wear and pattern wear.  相似文献   

13.
Φ5m立式风洞直升机垂直升降试验台研制   总被引:2,自引:0,他引:2  
中国空气动力研究与发展中心研制的Φ5m立式风洞直升机垂直升降试验台具有旋翼转速、旋翼轴倾角、旋翼总距、旋翼周期变距等远程实时控制功能,可开展直径2~3m量级旋翼模型的桨尖马赫数相似试验。获得的试验数据表明,试验台性能优良,已经形成了旋翼模型垂直升降试验能力,具备了承担直升机垂直升降性能试验及机理研究的能力。  相似文献   

14.
小型垂直轴风力机叶片结冰风洞试验与数值计算   总被引:1,自引:0,他引:1  
利用风洞试验和数值模拟相结合的手段,研究了小型垂直轴风力机叶片在旋转状态下的结冰特性以及结冰后翼型与风力机的气动特性变化,以期为建立较复杂的大型水平轴风力机叶片旋转试验系统和研究其结冰机理、防除冰技术提供参考。试验在东北农业大学自行设计的利用自然低温的结冰风洞中进行,获得了采用NACA0018翼型的小型2叶片垂直轴风力机风轮在5种尖速比下的结冰分布:风力机叶片结冰遍布叶片整个表面,随着尖速比的增大,结冰形状出现不对称性。同时,数值模拟结果表明:叶片结冰后,随着尖速比的增加和结冰量的增多,升力系数降低阻力系数增大的趋势明显,风力机的功率系数也随之下降。分析发现,叶片结冰导致不同旋转角下叶片翼型周围的压力场和速度场发生了不同程度的变化,从而气动特性发生变化,影响了风力机性能。  相似文献   

15.
为了实现在风扇机匣包容性试验中对叶片飞断转速的精确控制,开展了叶片飞断主动控制技术研究。提出了一种风扇 叶片爆破切割飞断的方法,进行了风扇叶片榫头的装药结构设计以及应用爆破技术的可行性分析;设计了遥控起爆系统,确保了 试验安全;根据静、动态双重验证的技术研究路线提出了详细的技术指标,使叶片飞出姿态满足试验器条件下包容性试验的技术 要求。结果表明:采用风扇叶片爆破切割飞断的方法顺利完成了某大涵道比发动机叶片在风扇机匣包容性试验指定转速下的爆 破飞断,叶片飞出的附加动能小于叶片飞失动能的0.05%,叶片飞断转速的控制精度在0.1%以内。验证了该项技术在试验器条件 下完成风扇机匣包容性试验的有效性,并为整机包容性试验奠定了基础。  相似文献   

16.
两种桨尖形状旋翼模型试验特性对比   总被引:1,自引:0,他引:1  
本文介绍了一副研制型旋翼模型在CARDC 8m×6m低速风沿的试验概况,给出了两种桨尖形状旋翼模型试验的悬停效率、前飞需用功率、变距拉杆载荷、桨叶载荷及振动特性的对比结果。并对结果进行分析,得出不同桨尖形状对旋翼一些特性的贡献。  相似文献   

17.
航空发动机涡轮叶片涂层热电偶测温技术   总被引:1,自引:0,他引:1  
针对航空发动机涡轮叶片测温难题,设计了一种与叶片一体化集成的涂层热电偶温度传感器。利用热喷涂技术进行温度传感器的原位制造与微加工,并对样品进行了静态标定试验、高温高速燃气冲击试验、高速旋转轮盘试验等系列性能考核,通过理论模型的建立,讨论了涂层对测温结果的影响规律。试验及仿真计算结果表明:涂层热电偶传感器测量精度达到Ⅰ级标准热电偶允差等级,并能在高温、高转速、复杂的气动激振力及大离心载荷下可靠稳定工作。该技术可实现航空发动机涡轮叶片表面温度实时监测与精确测量,为叶片设计定型及改进提供了1种新的技术手段。  相似文献   

18.
舰载直升机所处的环境恶劣,易出现旋翼桨尖过度挥舞及机身碰撞等事故,研究直升机舰面气弹响应可预防此类事故的出现。应用 CFD 方法获得舰船流场数据,结合桨叶动力学模型,综合提出旋翼气弹响应计算分析方法,研究不同来流速度、悬停位置与风向角下旋翼的气弹响应。结果表明:本文提出的气弹响应计算分析方法正确可行;舰船来流速度的增加...  相似文献   

19.
采用粒子图像测速仪PIV,对具有半管道式结构特点的空调器室外机轴流风机内部流场进行了实验研究,并结合实验结果分析了叶片顶部的叶尖涡和叶片出口尾缘涡的流动特性。实验结果显示在轴流风机流道内部叶顶区域存在与叶轮旋转方向相反的叶尖涡结构。叶尖涡产生于叶片前缘叶顶近吸力面侧,在流道内部与主流发生干涉后朝向周向和出口传播并逐渐耗散。叶尖涡涡心轨迹与叶顶弦长方向的夹角为10°,在叶高方向上叶尖涡的径向位置并不固定。与普通管道内部流动不同,叶片顶部与导风罩间的间隙中未捕捉到明显的叶顶泄漏涡现象。叶片出口近尾缘处30%以上叶高明显捕捉到尾缘涡结构,叶片压力面和吸力面侧的径向速度存在明显的方向变化,切向速度在尾迹区增加。  相似文献   

20.
对实壁机匣的实验转子进行了定常雷诺平均N-S方程(RANS)模拟,考察了实验转子叶尖端区流动状况,并基于转子叶尖端区在设计状态和近失速状态下的若干主要流动特征设计了一个带气室的轴向斜槽式处理机匣.在高速压气机试验台上对处理机匣的性能测量结果表明,设计的处理机匣有很好的扩稳效果,效率损失也可接受.这说明通过对实壁机匣的转子其流动结构的分析和把握、进而完成处理机匣的设计在一定程度上有可行性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号