首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Space Technology Experiment and Climate Exploration(STECE) is a small satellite mission of China for space technology experiment and climate exploration. A new test star tracker and one ASTRO 10 star tracker have been loaded on the STECE satellite to test the new star tracker's measurement performance. However,there is no autonomous precession–nutation correction function for the test star tracker,which causes an apparent periodic deflection in the inter-boresight angle between the two star trackers with respect to each other of up to ±500 arcsec,so the precession and nutation effect needs to be considered while assessing the test star tracker. This paper researches on the precession–nutation correction for the test star tracker's attitude measurement and presents a precession–nutation correction method based on attitude quaternion data. The periodic deflection of the inter-boresight angle between the two star trackers has been greatly eliminated after the precession and nutation of the test star tracker's attitude data have been corrected by the proposed method and the validity of the proposed algorithm has been demonstrated. The in-flight accuracy of the test star tracker has been assessed like attitude noise and low-frequency errors after the precession–nutation correction.  相似文献   

2.
Star trackers for attitude determination   总被引:4,自引:0,他引:4  
One problem comes to all spacecrafts using vector information. That is the problem of determining the attitude. This paper describes how the area of attitude determination instruments has evolved from simple pointing devices into the latest technology, which determines the attitude by utilizing a CCD camera and a powerful microcomputer. The instruments are called star trackers and they are capable of determining the attitude with an accuracy better than 1 arcsecond. The concept of the star tracker is explained. The obtainable accuracy is calculated, the numbers of stars to be included in the star catalogue are discussed and the acquisition of the initial attitude is explained. Finally the commercial market for star trackers is discussed  相似文献   

3.
本文介绍了通过固联安装在飞行器本体上的星跟踪器观测两颗恒星,确定飞行器姿态的一种算法,建立了相应的坐标系,推导了恒星观测角与描述飞行器姿态的四元数之间的关系。  相似文献   

4.
The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.  相似文献   

5.
王立  孙秀清  张春明  李晓  吴奋陟 《航空学报》2020,41(8):624117-624117
全天时星跟踪器与捷联惯导组成的惯性/天文组合导航系统具有精度高、自主性强等优点,在飞机、无人机、船舶等领域具有广泛的应用前景。组合导航系统长时间工作中力热变化导致安装矩阵漂移进而影响导航系统精度,全天时星跟踪器由于天空光影响视场小,一次只能观测一颗恒星,无法根据一副星图直接进行安装阵估计。提出了一种基于Levenberg-Marquart (L-M)算法的捷联惯性/天文组合导航系统安装阵在线快速高精度估计方法,利用捷联惯导姿态测量值,将不同时刻的观测星矢量转移到同一时刻同一坐标系中,构造多颗观测星的观测矢量误差与导航星矢量最小二乘目标函数,利用自适应步长的L-M算法对其进行迭代求解,实时得到系统安装矩阵的变化量。试验结果表明,使用该方法后星跟踪器在捷联惯导本体坐标系的输出恒星投影矢量精度提升了1倍以上,在线估计时间优于5 ms,满足用户实时性和高精度要求。  相似文献   

6.
A self-contained suite of astro-inertial navigation system is capable of autonomous mission and is operationally reliable. The typical astronavigation system (ANS) makes use of star-trackers, which are expensive and complex. To make the system cost effective and less complex, the star-tracker is replaced by a charge coupled device (CCD)-based star sensor, rigidly mounted on a strapdown inertial measurement unit (SIMU) of the system. This electro-optical star sensor is compact and easy to use with an ANS that utilizes efficient star identification techniques. This paper designs an algorithm that estimates axes misalignment angles of strapdown inertial navigation system (SINS) that makes stars' observations utilizing a CCD star sensor. Mathematical modeling of the suggested scheme was carried out and transformations between different frames were exercised. From the image projection geometry, stars' right ascensions and declinations, relative to the body frame, were estimated. Lastly, from the known stars' position vectors in mathematical platform and reference frames, axes misalignment matrix representing SINS attitude errors can be estimated employing the derived relationship.  相似文献   

7.
Star identification can be accomplished by several different available algorithms that identify the stars observed by a star tracker. However, efficiency and reliability remain key issues and the availability of new active pixel cameras requires new approaches. Two novel algorithms for recursive mode star identification are presented here. The first approach is derived by the spherical polygon search (SP-search) algorithm, it was used to access all the cataloged stars observed by the sensor field-of-view (FOV) and recursively add/remove candidate cataloged stars according to the predicted image motion induced by camera attitude dynamics. Star identification is then accomplished by a star pattern matching technique which identifies the observed stars in the reference catalog. The second method uses star neighborhood information and a catalog neighborhood pointer matrix to access the star catalog. In the recursive star identification process, and under the assumption of "slow" attitude dynamics, only the stars in the neighborhood of previously identified stars are considered for star identification in the succeeding frames. Numerical tests are performed to validate the absolute and relative efficiency of the proposed methods.  相似文献   

8.
星敏感器安装误差标定技术研究   总被引:1,自引:0,他引:1  
星敏感器是一类具有自主高精度姿态测量能力的仪器,输出姿态精度可达到角秒级。但实际组合导航应用中,星敏感器安装误差往往可达角分级,远远大于仪器本身误差,影响其使用品质,因此有必要在使用前对星敏感器安装误差进行建模标定。研究发现,星敏感器安装误差与惯导姿态误差存在耦合关系,难于分离。设计了一种快速标定方法,利用惯导输出姿态、位置信息以及星敏感器姿态输出构造观测量,建立卡尔曼滤波模型,通过滤波估计实现安装误差的地面标定。仿真结果表明,载体需要进行2个轴向上的机动才能将星敏感器三轴安装误差估计出来。相较于依靠外部基准姿态进行标定的方案,本方法具有快速高效、可操作性强等优点。  相似文献   

9.
Initial attitude acquisition by a modern star tracker is investigated here. Criteria for efficient organization of the on-board database are discussed with reference to a brightness-independent initial acquisition algorithm. Star catalog generation preprocessing is described, with emphasis on the identification of minimum star brightness for detection by a sensor based on a charge coupled device (CCD) photodetector. This is a crucial step for proper evaluation of the attainable sky coverage when selecting the stars to be included in the on-board catalog. Test results are also reported, both for reliability and accuracy, even if the former is considered to be the primary target. Probability of erroneous solution is 0.2% in the case of single runs of the procedure, while attitude determination accuracy is in the order of 0.02/spl deg/ in the average for the computation of the inertial pointing of the boresight axis.  相似文献   

10.
Attitude and Oribit Estimation Using Stars and Landmarks   总被引:2,自引:0,他引:2  
An extended Kalman filter is used to process line-of-sight measurements to stars and known landmarks providing a statistical indication of performance in estimating spacecraft attitude, orbital ephemeris, and the bias drift of a set of three strapdown gyros. The landmark measurements were assumed to have been taken from the imagery of an Earth-observing multispectral scanner. It is shown that filtering of these noisy measurements results in highly accurate estimates of the above parameters. Results are given showing the sensitivity of performance to various system parameters such as star tracker accuracy, errors in the knowledge of landmark position, and number of stars and landmarks processed.  相似文献   

11.
叶立军  刘付成  尹海宁  徐樱  宝音贺西 《航空学报》2019,40(10):323163-323163
多敏感器数据融合是获得更高精度姿态测量的有效方法,敏感器数据融合前必须先修正低频误差。首先,介绍了星敏感器低频误差(LFE)的产生机理及对其在线估计的必要性。其次,针对传统算法的不足,提出了基于纵向滤波的低频误差在线估计算法,该算法将传统低频误差估计问题转化为若干个常值误差估计问题,提高了估计精度。最后,给出了该算法具体实施方式,说明相关参数物理意义及选取原则。通过理论分析及仿真,算法误差可忽略不计。通过在轨数据仿真,星敏感器轨道周期低频误差可被消除。  相似文献   

12.
由于现有惯性器件精度水平有限,纯惯性导航误差较大,因此需要采用组合导航的方式来提高导航精度。目前,全自主组合导航方式中传统的惯性+星光定姿组合导航方法只能实现定姿,不能实现定位,无法修正加速度表测量误差引起的惯性导航误差,故在精度上可提升空间有限。为此,提出了一种惯性+星光折射定位组合导航方法,重点从星光折射定位原理、大气折射模型、非线性滤波和选星策略几个方面进行论证及分析。通过理论分析与数学仿真相结合的手段,验证了星光折射定位原理的正确性及工程可行性,可将自主导航精度提升至100m,从而为进一步提高自主导航精度提供了一种技术途径。  相似文献   

13.
 纯惯性导航或多普勒导航的一个共同缺点是:一般都具有随时问或距离增长的位置误差,这就需要有一个外基准系统。为了满足现代飞行器导航所要求的高精度和可靠性,组合式导航已成为近代导航系统发展的一种趋势。文中提供的天文-惯性组合系统,在物理意义上是一种较为合理的和比较精确的组合形式,在现代各类飞行器上有着重要的特珠用途。天文导航中的星体跟踪器是这种组合形式获得量测信息的主要设备。本文总结了国内第一台自行设计的自动星体跟踪器的研究设计方法和解决主要技术关键的措施,列出了有关公式。试验结果证明设计是合理的,达到了夜间地面能跟踪二等以上星体,白昼一定亮度背景条件下能跟踪亮星的预定性能指标。  相似文献   

14.
The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.  相似文献   

15.
研究了一种星敏感器一陀螺组合定姿方式中的姿态敏感器误差的实时在轨标定方法。首先,选择直观的欧拉角作为姿态描述参数,根据星敏感器和陀螺的测量原理建立星敏感器一陀螺在轨标定的测量方程和状态方程,并以此建立数学模型。其次,采用简单高效的EKF(ExtendedKalmanFilter,扩展卡尔曼滤波)作为估值算法,进行了在轨标定数值仿真。对于航天器姿态定向中出现的姿态角和星敏感器安装角之间的耦合问题,通过在特定姿态通道上施加简单姿态机动实现了解耦。数值结果表明,该实时在轨标定方法,尤其是所提出的姿态角和星敏感器安装角解耦策略,可以实现对航天器姿态的实时精确估计以及对星敏感器安装误差、陀螺常值漂移和相关漂移等误差的实时在轨标定。该方法可用于航天器姿态测量设备的实时在轨标定和航天器姿态的高精度实时确定。  相似文献   

16.
A software system for a star imager for online satellite attitude determination is described. The system works with a single standard commercial CCD camera with a high aperture lens and an onboard star catalog. It is capable of both an initial coarse attitude determination without any prior knowledge of the satellite orientation and a high-accuracy attitude determination based on prediction and averaging of several identified star constellations. In the high-accuracy mode the star image aims at an accuracy better than 2 arc sec with a processing time of less than a few seconds. The star imager has been developed for the Danish Oersted satellite  相似文献   

17.
A software system for a star imager for on-line satellite attitude determination is described. The system works with a single standard commercial CCD-camera with a high aperture lens and an onboard star catalogue. It is capable of both an initial course attitude determination without any prior knowledge of the satellite orientation and a high-accuracy attitude determination based on prediction and averaging of several identified star constellations. In the high accuracy mode the star imager aims at an accuracy better than 2 arc sec with a processing time of less than a few seconds. The star imager is developed for the Danish microsatellite Oersted  相似文献   

18.
IDENTIFICATIONOFGYRODRIFTSUNDERTHREEAXISATTITUDECOUPLINGJINGWuxing(荆武兴),WANGXuexiao(王学孝),WUYaohua(吴瑶华)(HarbinInstituteofTechn...  相似文献   

19.
宋凝芳  杨艳强 《航空学报》2020,41(8):623674-623674
为了降低弹载星惯组合(Stellar-INS)飞行中段对调姿观星的要求,提高星惯组合姿态精度,提出了大视场(LFOV)星惯组合深度融合导航方法。小视场(NFOV)星敏感器输出星矢量为主,大视场星敏感器可同时输出姿态和星矢量信息,分别推导了基于星敏感器输出姿态和星矢量信息的观测方程,分析了星矢量和姿态观测方法之间的关联性。建立了包含星惯安装误差、陀螺误差以及初始平台误差角的星惯组合全误差项模型,基于线性卡尔曼滤波给出了深度融合导航方法。开展了数学仿真验证,分析了不同调姿观星路径约束下,大/小视场星惯组合性能差异。结果表明,大视场星惯组合深度融合导航方法不仅可以降低调姿观星约束要求,还可以实现组合姿态性能提升。  相似文献   

20.
The Applications Technology Satellite-6 (ATS-6) RF interferometer is utilized primarily as a precision 3-axis attitude sensor having an unambiguous field of view of 350°. This function requires two separated ground transmitters, each using one of the two available frequency channels or sharing a single channel by time multiplexing. For 3-axis control, one uplink transmitter can provide 2-axis attitude (pitch and roll) with other sensors (e.g., a Polaris tracker) providing yaw attitude. By utilizing two uplink transmitters and the Earth sensor or three time multiplexed uplink transmitters, the interferometer can also provide measurements of ATS-6 spacecraft orbit position. Uplink frequencies are 6.150 and 6.155 GHz. The receiving antennas are spaced at 19.95 wavelengths (?) for the vernier baseline and 1.66 ? for the coarse baseline. Spacecraft system weight is 8.39 kg (18.5 lb) and power requirement is 15.5 W. Flight evaluation results are given for the interferometer including R F link budgets, modulation of uplink carrier, signal-to-noise ratio, and dropout behavior. A hardware calibration model is described, containing major biases in the phase measurements. Techniques for flight calibration as both an attitude and spacecraft position sensor are outlined . Flight testing has shown that on-line calibration of receiver/converter biases must be performed on a short term routine basis. Interferometer resolution was found to be 0.00140 space angle with negligible noise (jitter) at transmitted power levels above 72 dBW. As an attitude sensor, the interferometer has demonstrated the ability to provide stabilization to better than 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号