首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 531 毫秒
1.
对于在湍流边界层近壁区,作为相干结构的主要特征的流向涡的产生及发展的全过程进行了研究.采用准二维的共振三波作为湍流边界层近壁区相干结构初值,用直接数值模拟方法模拟了准二维波发展到明显的三维扰动以及其中流向涡生成的整个过程,经分析发现,在该过程中,由于非线性作用,相干结构出现了明显的三维性,并产生了马蹄涡,与实验结果相一致,而且也研究了压力梯度对于流向涡生成以及发展的影响, 在逆压梯度下,流向涡的生成得更早、更快,相干结构幅值增长较快,结构变得更加复杂.这些都说明了逆压梯度对相干结构具有激励作用.  相似文献   

2.
定常压力梯度边界层相干结构的直接数值模拟   总被引:1,自引:0,他引:1  
根据流动稳定性理论,将不稳定波的一个周期作为相干结构的初值,采用直接数值模拟方法对有压力梯度湍流边界层中相干结构的演化进行了研究,得出其各种特性的变化与实验观测到的结果一致.  相似文献   

3.
利用流动显示及表面压力测量方法研究了后掠翼身干扰区的流动特性,并研究了用小边条等措施改善干扰区的流动特性的效果.结果表明,随着不同机翼后掠角、不同迎角及不同Re数对干扰区流动特性的影响,流态可以从一涡系变成多涡系,由定常变成非定常,而且在一定的Re数以后涡系会紊流化;翼身干扰区上游的的逆压梯度是导致边界层分离的物理原因,利用面积很小的边条可以降低干扰区局部的逆压梯度,可以导致干扰区的旋涡很弱,甚至不出现,这是很有实际意义的.  相似文献   

4.
低雷诺数下翼型前缘流动分离机制的研究   总被引:9,自引:0,他引:9  
采用高精度有限差分格式,对来流雷诺数为1.0×104,攻角为3°的二维翼型流动进行了直接数值模拟,研究了低雷诺数下翼型前缘流动的分离机制,描述了分离涡系的相互作用规律.计算结果表明:前缘椭圆弧靠近叶身位置存在吸力峰,流动在吸力峰内强逆压梯度的作用下发生分离;翼型上表面形成了包含驻留涡、脱落涡和二次涡的涡系结构,其尺度随时间不断变化,具有强烈的非定常性;表面压力分布曲线可以较好的描述翼型边界层流动.   相似文献   

5.
使用GAO-YONG湍流方程组对扩压器流动的计算   总被引:3,自引:0,他引:3  
采用基于同位网格的SIMPLE方法求解GAO-YONG不可压湍流方程组,对二维扩压器流动进行了数值模拟.通过界面速度动量插值法解决了压力锯齿波问题,并且采用了正交贴体网格和二阶QUICK格式离散对流项以提高计算精度.与实验结果以及BL(Baldw-Lomax)模型计算结果的比较表明,不需要任何经验系数及壁面函数的GAO-YONG不可压湍流模型方程组能够对有压力梯度的湍流流动做出很好的预测.计算发现,在机械能方程中引入平均流压力梯度的作用,对GAO-YONG湍流方程组正确模拟逆压力梯度流动起到了关键作用.   相似文献   

6.
基于相干结构的大涡模拟壁面模型   总被引:1,自引:0,他引:1  
首先对湍流边界层近壁区相干结构群进行研究,根据共振三波理论使用沿流向周期性发展的多个三维波构造其初始结构,通过直接数值模拟得到该相干结构群的演化特性.在此基础上,提出了基于近壁区相干结构流动参数的新型大涡模拟壁面模型.确定了此壁面模型与主流大涡模拟衔接的原理方案.计算结果表明:该壁面模型在减少计算量的同时,能够为主流区大涡模拟提供重要的壁面大尺度结构信息,使计算取得准确的结果,实现了壁面模型的基本功能.   相似文献   

7.
通过求解基于稳定性理论的非湍流脉动动能输运方程,预测了来流Ma为5.91的裙锥绕流流动的层流-湍流转捩点,并采用SST(Shear-Stress Transport)湍流模型结合代数间歇因子模型对转捩流场进行了数值模拟.结果表明非湍流脉动动能输运方程模型可以很好地捕捉逆压梯度对转捩前期边界层内的不稳定波动频率的影响.等温壁面条件下计算得到的转捩位置与静风洞实验结果基本一致.壁面冷却促进第2模态不稳定波动的增长,使转捩提前发生.代数间歇因子模型模拟高马赫数流动的转捩区长度较短,温度峰值偏低.  相似文献   

8.
 用三步显式格式时间推进求解物理空间曲线网格上有限体积离散的Euler方程,数值模拟一种战斗机外形的涡流场.计算的机翼表面压力分布与实验符合较好,用Euler方程捕获到机翼前缘分离涡(主涡)及翼面上的二次分离涡.Euler方程解中出现的二次涡可能是逆压梯度、尖锐边缘和人工粘性共同作用的结果,它的流谱与实验定性符合.  相似文献   

9.
矩形微槽乙醇水溶液传热特性数值模拟   总被引:1,自引:1,他引:0  
由于影响微槽传热特性的因素较多,实验研究结果相互矛盾,使得实验研究和数值仿真相结合成为进一步深入认识微槽传热特性的有效手段.在实验研究的基础上,采用有限体积法对矩形微槽中体积浓度30%的乙醇水溶液传热特性进行了三维数值模拟. 矩形微槽采用两种不同对称结构和热边界条件,进口采用流动完全发展边界条件.对不同对称结构和物性条件(常物性和变物性)的计算结果进行了比较,并与实验结果进行了对比.研究表明,对所研究微槽结构和工质,采用流动完全发展进口条件,以及随温度变化的热物性参数,数值计算结果与实验结果基本吻合.   相似文献   

10.
采用激光诱导荧光的流动显示方法研究了在一对反对称模式工作的脉冲射流激励下,雷诺数约为33 000的圆形湍流射流的流场。捕捉了剪切层中大尺度展向涡结构的演化发展过程,研究了激励频率和振幅对涡结构以及强化混合效果的影响。结果表明:受激励后的主喷流剪切层中产生了交错的展向涡结构,引起了喷流的振荡,增强了卷吸能力。激励频率主要影响相邻涡环间的距离。存在最佳激励频率使喷流在受激励平面远场分叉、剪切层扩展最宽。激励振幅对涡结构也存在较大影响,振幅较大时产生的涡结构尺度更大、相干性更强、强化混合效果更好。   相似文献   

11.
沟槽面湍流减阻研究综述   总被引:21,自引:0,他引:21  
对近20年来沟槽面湍流边界层特性、湍流拟序结构、湍流减阻及其机理的研究进展进行了综述.内容涉及沟槽面平板、旋成体、机翼等在压、跨、超音速流动情况下的实验研究成果;压力梯度、攻角、侧滑角等的影响;湍流猝发特性、紊动特性、近壁区带条结构的特征及减阻机理等方面的工作.为更有效地减少表面摩阻,必须深入开展对沟槽面湍流边界层特性、湍流拟序结构及湍流减阻机理等方面的研究.   相似文献   

12.
在湍流边界层的近壁区,采用对称共振三波的理论模型描述相干结构,根据理论模型对Reynolds应力输运方程逐项进行计算和分析,结果与直接数值模拟符合很好.这不仅在理论上有益于对湍流物理机制的了解,而且展现了一种可能性,即根据相干结构的理论知识来改造湍流模型,使之具有更清晰的物理内涵以提高近壁区的预估精度.  相似文献   

13.
近壁区理论耗散率模型的改进   总被引:1,自引:1,他引:0  
提出了在边界层的近壁区,采用共振三波的理论模型描述湍流边界层相干结构,由此解决了对称三维波理论模型不能处理三阶相关量的问题,根据新的理论模型对ε方程逐项进行计算和分析.与原理论模型计算结果相比,本文理论结果与直接数值模拟(DNS)符合更好.  相似文献   

14.
利用数值模拟和风洞实验相结合的方法,研究了闭式流动腔体的流动特征及其设置圆柱控制杆后腔体内声压级(SPL, Sound Pressure Level)和压力分布的变化.数值模拟求解三维N-S方程,采用AUSM+计算格式,湍流模型采用Wilcox k-ω模型.实验在0.6 m×0.6 m超音速风洞中进行,在腔体底部布置了40个常规静压测量点和15个动态测压点.研究表明,在外流为超音速流时,闭式流动的腔体底部压力变化梯度较大,腔体底部和后缘的测压点的SPL值和频率关系曲线中没有明显的SPL峰值.实施控制后,腔体底部的压力变化梯度减缓,在腔体后缘分离区内的测压点SPL值降低,而前缘分离区内的测压点SPL值增加.   相似文献   

15.
SCI网络拓扑结构的可生存性   总被引:1,自引:0,他引:1  
从航空电子系统的需求出发,研究了适于航电系统的SCI(Scalable Coherent Interface)网络拓扑结构的可生存性.选择了由双节点或skip-a-node结构形式构成的网格形、蝶形等适于SCI网络的拓扑形式并构造了二种网络拓扑结构以便于不同结构的可生存性比较.同时考虑边及节点损坏的情况,利用图的邻接矩阵对网络连通关系进行了计算和分析,找到并印证了具有高可生存性的拓扑形式,同时发现相同结构下小环方向的改变对可生存性也有影响.   相似文献   

16.
为了拓宽微型探头-传感系统的可用频带,满足高频压力信号的测量需求,需对系统的频率响应特性进行研究,并分析现有数学模型对不同结构微型探头-传感系统的适用性及预测精度。对5种典型结构的微型探头-传感系统进行了判定和划分,综述了现有微型探头-传感系统的频响预测模型、假设条件及模型修正方法。为对理论数学模型进行定量评价,计算得到了不同结构微型探头-传感系统的谐振频率、截止频率和工作频带(幅值误差±5%),并与数值仿真和实验结果进行了对比。结果表明:对于引压管较短的谐振腔,利用Panton模型计算其谐振频率,误差可控制在1%以内;对于引压管较长及带有测压孔的结构,B-T模型的预测精度最高。对实验用微型探头-传感系统进行了优化设计,并用于超声速凝结自激振荡现象的研究。结果表明:优化的微型探头-传感系统频响特性可满足高频(约10 kHz)压力波动信号的动态测量需求。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号