首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolf  Aron A. 《Space Science Reviews》2002,104(1-4):101-128
The Cassini mission to Saturn employs a Saturn orbiter and a Titan probe to conduct an intensive investigation of the Saturnian system. The orbiter flies a series of orbits, incorporating flybys of the Saturnian satellites, called the ‘satellite tour.’ During the tour, the gravitational fields of the satellites (mainly Titan) are used to modify and control the orbit, targeting from one satellite flyby to the next. The tour trajectory must also be designed to maximize opportunities for a diverse set of science observations, subject to mission-imposed constraints. Tour design studies have been conducted for Cassini over a period of several years to identify trades and strategies for achieving these sometimes conflicting goals. Concepts, strategies, and techniques previously developed for the Galileo mission to Jupiter have been modified, and new ones have been developed, to meet the requirements of the Cassini mission. A sample tour is presented illustrating the application of tour design strategies developed for Cassini. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The international Cassini/Huygens mission consists of the Cassini Saturn Orbiter spacecraft and the Huygens Titan Probe that is targeted for entry into the atmosphere of Saturn's largest moon, Titan. From launch on October 15, 1997 to arrival at Saturn in July 2004, Cassini/Huygens will travel over three billion kilometers. Once in orbit about Saturn, Huygens is released from the orbiter and enters Titan's atmosphere. The Probe descends by parachute and measures the properties of the atmosphere. If the landing is gentle, the properties of the surface will be measured too. Then the orbiter commences a four-year tour of the Saturnian system with 45 flybys of Titan and multiple encounters with the icy moons. The rings, the magnetosphere and Saturn itself are all studied as well as the interactions among them. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

4.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

5.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

6.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

7.
The formation of Titan??s induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan??s plasma interaction to identify important upstream parameters and review the physics of Saturn??s magnetosphere near Titan??s orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn??s magnetosheath. Statistical work on Titan??s upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.  相似文献   

8.
Owen  Tobias  Gautier  Daniel 《Space Science Reviews》2002,104(1-4):347-376
This report follows the presentation originally given in the ESA Phase A Study for the Cassini Huygens Mission. The combination of the Huygens atmospheric probe into Titan's atmosphere with the Cassini orbiter allows for both in-situ and remote-sensing observations of Titan. This not only provides a rich harvest of data about Saturn's famous satellite but will permit a useful calibration of the remote-sensing instruments which will also be used on Saturn itself. Composition, thermal structure, dynamics, aeronomy, magnetosphere interactions and origins will all be investigated for the two atmospheres, and the spacecraft will also deliver information on the interiors of both Titan and Saturn. As the surface of Titan is intimately linked with the atmosphere, we also discuss some of the surface studies that will be carried out by both probe and orbiter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Saturn??s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn??s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn??s magnetosphere all the more difficult. Cassini??s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn??s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn??s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.  相似文献   

10.
The dual technique magnetometer system onboard the Cassini orbiter is described. This instrument consists of vector helium and fluxgate magnetometers with the capability to operate the helium device in a scalar mode. This special mode is used near the planet in order to determine with very high accuracy the interior field of the planet. The orbital mission will lead to a detailed understanding of the Saturn/Titan system including measurements of the planetary magnetosphere, and the interactions of Saturn with the solar wind, of Titan with its environments, and of the icy satellites within the magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

11.
The Cassini spacecraft, launched in October 1997 and expected to reach Saturn in 2004, carries two magnetometer experiments on a 10-m boom, one at the mid-section of the boom and the other situated at the end of the boom. In order to gather valid scientific magnetic field data and avoid electromagnetic interference, the spacecraft had to comply with stringent magnetostatic cleanliness requirements. This paper describes the results of the Cassini magnetics cleanliness program that achieved the goal of minimizing the magnetic field interference with Cassini’s DC magnetic field science instruments.  相似文献   

12.
Evolutionary scenarios for the major satellites of Jupiter, Saturn, Neptune, and Pluto-Charon are discussed. In the Jovian system the challenge is to understand how the present Laplace resonance of Io, Europa, and Ganymede was established and to determine whether the heat being radiated by Io is in balance with the present tidal dissipation in the moon. In the Saturnian system, Enceladus and Titan are the centers of attention. Tidal heating is the likely source of activity at the south pole of Enceladus, although the details of how the heating occurs are not understood. An evolutionary scenario based on accretion and internal differentiation is presented for Titan, whose present substantial orbital eccentricity is not associated with any dynamical resonance. The source and maintenance of methane in Titan’s present atmosphere remain uncertain. Though most attention on the Saturnian moons focuses on Titan and Enceladus, the mid-size satellites Iapetus, Rhea, Tethys, and the irregular satellite Phoebe also draw our interest. An evolutionary scenario for Iapetus is presented in which spin down from an early rapidly rotating state is called upon to explain the satellite’s present oblate shape. The prominent equatorial ridge on Iapetus is unexplained by the spin down scenario. A buckling instability provides another possible explanation for the oblateness and equatorial ridge of Iapetus. Rhea is the only medium-size Saturnian satellite for which there are gravity data at present. The interpretation of these data are uncertain, however, since it is not known if Rhea is in hydrostatic equilibrium. Pluto and Charon are representative of the icy dwarf planets of the Kuiper belt. Did they differentiate as they evolved, and do either of them have a subsurface liquid water ocean? New Horizons might provide some answers when it arrives at these bodies.  相似文献   

13.
The Magnetostatic Cleanliness Program for the Cassini Spacecraft   总被引:3,自引:0,他引:3  
The Cassini spacecraft, launched in October 1997 and expected to reach Saturn in 2004, carries two magnetometer experiments on a 10-m boom, one at the mid-section of the boom and the other situated at the end of the boom. In order to gather valid scientific magnetic field data and avoid electromagnetic interference, the spacecraft had to comply with stringent magnetostatic cleanliness requirements. This paper describes the results of the Cassini magnetics cleanliness program that achieved the goal of minimizing the magnetic field interference with Cassini’s DC magnetic field science instruments.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

14.
The Saturnian system contains 18 known satellites ranging from 10 km to 2575 km in radius. In bulk properties and surface appearance these objects show less regularity than the sparser Jupiter system. The Galilean-sized moon Titan sports a dense atmosphere of nitrogen and methane which renders surface observations difficult, but also makes this moon intriguing from the standpoints of climate change and exobiology. The Cassini-Huygens mission will make extensive observations of the satellites over a range of wavelengths, as well as using in-situ sampling of satellite environments (and in the case of Titan, sampling of atmosphere and surface). The goals of these extensive investigations are to understand the bulk properties of the satellites, their surface compositions and evolution through time, as well as interactions with the magnetosphere and rings of Saturn. This knowledge in turn should provide a deeper understanding of the origin of the Saturnian system as a whole and underlying causes for the distinctive differences from the Jovian satellite system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Clausen  K.C.  Hassan  H.  Verdant  M.  Couzin  P.  Huttin  G.  Brisson  M.  Sollazzo  C.  Lebreton  J.-P. 《Space Science Reviews》2002,104(1-4):155-189
Space Science Reviews - The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter...  相似文献   

17.
Metallic ions coming from the ablation of extraterrestrial dust, play a significant role in the distribution of ions in the Earth’s ionosphere. Ions of magnesium and iron, and to a lesser extent, sodium, aluminium, calcium and nickel, are a permanent feature of the lower E-region. The presence of interplanetary dust at long distances from the Sun has been confirmed by the measurements obtained by several spacecrafts. As on Earth, the flux of interplanetary meteoroids can affect the ionospheric structure of other planets. The electron density of many planets show multiple narrow layers below the main ionospheric peak which are similar, in magnitude, to the upper ones. These layers could be due to long-lived metallic ions supplied by interplanetary dust and/or their satellites. In the case of Mars, the presence of a non-permanent ionospheric layer at altitudes ranging from 65 to 110 km has been confirmed and the ion Mg+?CO2 identified. Here we present a review of the present status of observed low ionospheric layers in Venus, Mars, Jupiter, Saturn and Neptune together with meteoroid based models to explain the observations. Meteoroids could also affect the ionospheric structure of Titan, the largest Saturnian moon, and produce an ionospheric layer at around 700 km that could be investigated by Cassini.  相似文献   

18.
The Cassini mission provides a great opportunity to enlarge our knowledge of atmospheric electricity at the gas giant Saturn. Following Voyager studies, the RPWS (Radio and Plasma Wave Science) instrument has measured again the so-called SEDs (Saturn Electrostatic Discharges) which are the radio signature of lightning flashes. Observations by Cassini/ISS (Imaging Science Subsystem) have shown cloud features in Saturn’s atmosphere whose occurrence, longitudinal drift rate, and brightness were strongly related to the SEDs. In this paper we will review the main physical parameters of the SEDs. Lightning does not only give us clues about the dynamics of the atmosphere, but also serves as a natural tool to investigate properties of Saturn’s ionosphere. We will also discuss other lightning related phenomena and compare Saturn lightning with terrestrial and Jovian lightning.  相似文献   

19.
20.
Titan’s stratospheric ice clouds are by far the most complex of any observed in the solar system, with over a dozen organic vapors condensing out to form a suite of pure and co-condensed ices, typically observed at high winter polar latitudes. Once these stratospheric ices are formed, they will diffuse throughout Titan’s lower atmosphere and most will eventually precipitate to the surface, where they are expected to contribute to Titan’s regolith.Early and important contributions were first made by the InfraRed Interferometer Spectrometer (IRIS) on Voyager 1, followed by notable contributions from IRIS’ successor, the Cassini Composite InfraRed Spectrometer (CIRS), and to a lesser extent, from Cassini’s Visible and Infrared Mapping Spectrometer (VIMS) and the Imaging Science Subsystem (ISS) instruments. All three remote sensing instruments made new ice cloud discoveries, combined with monitoring the seasonal behaviors and time evolution throughout Cassini’s 13-year mission tenure.A significant advance by CIRS was the realization that co-condensing chemical compounds can account for many of the CIRS-observed stratospheric ice cloud spectral features, especially for some that were previously puzzling, even though some of the observed spectral features are still not well understood. Relevant laboratory transmission spectroscopy efforts began just after the Voyager encounters, and have accelerated in the last few years due to new experimental efforts aimed at simulating co-condensed ices in Titan’s stratosphere. This review details the current state of knowledge regarding the organic ice clouds in Titan’s stratosphere, with perspectives from both observational and experimental standpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号