首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Crews of manned interplanetary missions may accumulate significant radiation exposures from the galactic cosmic ray (GCR) environment in space. Estimates of how these dose levels are affected by the assumed temporal and spatial variations in the composition of the GCR environment, and by the effects of the spacecraft and body self-shielding on the transported radiation fields are presented. In this work, the physical processes through which shielding alters the transported radiation fields are described. We then present estimates of the effects on model calculations of (1) nuclear fragmentation model uncertainties, (2) solar modulation, (3) variations between solar cycles, and (4) proposed changes to the quality factors which relate dose equivalent to absorbed dose.  相似文献   

2.
The paper reviews radiation exposures recorded during space flights of the US and USSR. Most of the data are from manned missions and include discussion of absorbed dose and dose rates as a function of parameters such as altitude, inclination, spacecraft type and shielding. Preliminary data exist on the neutron and HZE-particle component, as well as the LET spectra. For low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence upon inclination. The doses range from about 6 millirad per day for the Space Transportation System No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. Complete shielding from the galactic cosmic rays does not appear practical because of spacecraft weight limitations.  相似文献   

3.
Active shielding for long duration interplanetary manned missions   总被引:1,自引:0,他引:1  
For long duration interplanetary manned missions the protection of astronauts from cosmic radiation is an unavoidable problem that has been considered by many space agencies. In Europe, during 2002–2004, the European Space Agency supported two research programs on this thematic: one was the constitution of a dedicated study group (on the thematic ‘Shielding from cosmic radiation for interplanetary missions: active and passive methods’) in the framework of the ‘life and physical sciences’ report, and the other an industrial study concerning the ‘radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars’. Both programs concluded that, outside the protection of the magnetosphere and in the presence of the most intense and energetic solar events, the protection cannot rely solely on the mechanical structures of the spacecraft, but a temporary shelter must be provided. Because of the limited mass budget, the shelter should be based on the use of superconducting magnetic systems. For long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole mission period. This requires the protection of a large habitat where they could live and work, and not the temporary protection of a small volume shelter. With passive absorbers unable to play any significant role, the use of active shielding is mandatory. The possibilities offered by superconducting magnets are discussed, and recommendations are made about the needed R&D. The technical developments that have occurred in the meanwhile and the evolving panorama of possible near future interplanetary missions, require revising the pioneering studies of the last decades and the adoption of a strategy that considers long lasting human permanence in ‘deep’ space, moreover not only for a relatively small number of dedicated astronauts but also for citizens conducting there ‘normal’ activities.  相似文献   

4.
The geomagnetically-trapped and galactic cosmic radiation environments are two of the major sources of naturally-occurring space radiation exposure to astronauts in low earth orbit. The exposure is dependent primarily on altitude, spacecraft shielding, crew stay-times, and solar cycle effects for a 28.5 deg orbital inclination. Based on Space Shuttle experience, the calculated results of a parametric study are presented for several mission scenarios using a computerized anatomical man model and are compared with the NASA crew exposure limits for several critical body organs.  相似文献   

5.
Using the Langley Research Center galactic cosmic ray (GCR) transport computer code (HZETRN) and the computerized anatomical man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (linear energy transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.  相似文献   

6.
Man is now entering an era of colonizing the moon and exploration of Mars. The crewmembers of a piloted mission to Mars will be exposed to inner belt trapped protons, the outer trapped electrons, and the galactic cosmic radiation. In addition there is always the added risk of acute exposure to a solar particle event. Current radiation risk is estimated using the idea of absorbed dose and ICRP-26, LET-dependent quality factors. In a spacecraft with aluminum walls (2 g cm-2) at solar minimum the calculated dose equivalent is 0.73 Sv for a 406-day mission. Based on the current thinking this leads to an excess cancer mortality in a 35 year male of about 1%. About 75% of the dose equivalent is contributed by HZE particles and target fragments with average quality factors of 10.3 and 20, respectively. The entire concept of absorbed dose, quality factor, and dose equivalent as applied to such missions needs to be reexamined, in light of the fact that less than 50% of the nuclei in the body of the astronaut would have been traversed by a single GCR nuclei in the 406-day mission. Clearly, more biologically relevant information about the effects of heavy ions and target fragments is needed and fluence based risk estimation strategy developed for such long term stays in space.  相似文献   

7.
The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.  相似文献   

8.
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20–500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.  相似文献   

9.
Previously, calculations of bone marrow dose from the large solar particle event (SPE) of July 2000 were carried out using the BRYNTRN space radiation transport code and the computerized anatomical man (CAM) model. Results indicated that the dose for a bone marrow site in the mid-thigh might be twice as large as the dose for a site in the pelvis. These large variations may be significant for space radiation protection purposes, which traditionally use an average of many (typically 33) sites throughout the body. Other organs that cover large portions of the body, such as the skin, may also exhibit similar variations with doses differing from site to site. The skin traditionally uses an average of 32 sites throughout the body. Variations also occur from site to site among the dose equivalents, which may be important in determining stochastic effects. In this work, the magnitudes of dose and dose equivalent variations from site to site are investigated. The BRYNTRN and HZETRN transport codes and the CAM model are used to estimate bone marrow and skin doses and dose equivalents as a function of position in the body for several large solar particle events and annual galactic cosmic ray spectra from throughout the space era. These position-specific results are compared with the average values usually used for radiation protection purposes. Various thicknesses of aluminum shielding, representative of nominal spacecraft, are used in the analyses.  相似文献   

10.
The National Aeronautics and Space Administration (NASA) administrator has identified protection from radiation hazards as one of the two biggest problems of the agency with respect to human deep space missions. The intensity and strength of cosmic radiation in deep space makes this a 'must solve' problem for space missions. The Moon and two Earth-Moon Lagrange points near Moon are being proposed as hubs for deep space missions. The focus of this study is to identify approaches to protecting astronauts and habitats from adverse effects from space radiation both for single missions and multiple missions for career astronauts to these destinations. As the great cost of added radiation shielding is a potential limiting factor in deep space missions, reduction of mass, without compromising safety, is of paramount importance. The choice of material and selection of the crew profile play major roles in design and mission operations. Material trade studies in shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space mission's to two Earth-Moon co-linear Lagrange points (L1) between Earth and the Moon and (L2) on back side of the moon as seen from Earth, and to the Moon have been studied. It is found that, for single missions, current state-of-the-art knowledge of material provides adequate shielding. On the other hand, the choice of shield material is absolutely critical for career astronauts and revolutionary materials need to be developed for these missions. This study also provides a guide to the effectiveness of multifunctional materials in preparation for more detailed geometry studies in progress.  相似文献   

11.
The risk of radiation-induced cancer to space travelers outside the earth's magnetosphere will be of concern on missions to the Moon and beyond to Mars. High energy galactic cosmic rays with high charge (HZE particles) will penetrate the spacecraft and the bodies of the astronauts, sometimes fragmenting into nuclear secondary species of lower charge but always ionizing densely, thus causing cellular damage which may lead to malignant transformation. To quantitate this risk, the concept of dose equivalent (in which a quality factor Q as a function of LET is assumed) may not be adequate, since different particles of the same LET may have different efficiencies for tumor induction. Also, RBE values on which quality factors are based depend on response to low-LET radiation at low doses, a very difficult region for which to obtain reliable experimental data. Thus, we introduce a new concept, a fluence-related risk coefficient (F), which is the risk of a cancer per unit particle fluence and which we call the risk cross section. The total risk is the sum of the risk from each particle type: sigma i integral Fi(Li) phi i(Li) dLi, where Li is the LET and phi i(Li) is the fluence-LET spectrum of the ith particle type. As an example, tumor prevalence data in mice are used to estimate the probability of mouse Harderian gland tumor induction per year on an extra-magnetospheric mission inside an idealized shielding configuration of a spherical aluminum shell 1 g/cm2 thick. The combined shielding code BRYNTRN/GCR is used to generate the LET spectra at the center of the sphere. Results indicate a yearly prevalence at solar minimum conditions of 0.06, with 60% of this arising from charge components with Z between 10 and 28, and two-thirds of the contribution arising from LET components between 10 and 200 keV/micrometers.  相似文献   

12.
The radiation environment on the surface of the Moon presents a new source of particles resulting from the interaction of incoming solar protons and galactic cosmic rays with the lunar regolith. Here we present a study of the fluence profile of primary and secondary particles on the top 1 m layer of lunar regolith for the spectrum of one of the hardest spectrum solar event, that of February 1956. Different regolith compositions and their influence in proton and neutron production and backscattering is considered, as well as the nature of the backscattered radiation. Simple geometry Monte Carlo simulations have been used also for calculating regolith shielding properties, and it is shown that a layer of at least 50 cm regolith is needed for significantly reducing the dose levels received by astronauts in a hypothetical lunar habitat.  相似文献   

13.
Estimates of organ dose equivalents for the skin, eye lens, blood forming organs, central nervous system, and heart of female astronauts from exposures to the 1977 solar minimum galactic cosmic radiation spectrum for various shielding geometries involving simple spheres and locations within the Space Transportation System (space shuttle) and the International Space Station (ISS) are made using the HZETRN 2010 space radiation transport code. The dose equivalent contributions are broken down by charge groups in order to better understand the sources of the exposures to these organs. For thin shields, contributions from ions heavier than alpha particles comprise at least half of the organ dose equivalent. For thick shields, such as the ISS locations, heavy ions contribute less than 30% and in some cases less than 10% of the organ dose equivalent. Secondary neutron production contributions in thick shields also tend to be as large, or larger, than the heavy ion contributions to the organ dose equivalents.  相似文献   

14.
Nuclear track detectors were used to measure the integral Linear Energy Transfer (LET) spectra above 1 GeV per cm water behind the complex material shielding inside a spacecraft. The measurements are compared with predictions of the contribution of high charge, high energy HZE particles of the galactic cosmic radiation taking into account the influence of solar and geomagnetic modulation and shielding by matter.  相似文献   

15.
It has been known for some time that adequate assessment of spacecraft shield requirements and concomitant estimates of astronauts radiation exposures from galactic cosmic radiation requires accurate, quantitative methods for characterizing these radiation fields as they pass through thick absorbers. The main nuclear interaction processes involved are (1) nuclear elastic and inelastic collisions, and (2) nuclear breakup (fragmentation) and electromagnetic dissociation (EMD). Nuclear fragmentation and EMD are important because they alter the elemental and isotopic composition of the transported radiation fields. At present, there is no suitably accurate theory for predicting nuclear fragmentation cross sections for all collision pairs and energies of interest in space radiation protection. Typical cross-section differences between theory and experiment range from about 25 percent to a factor of two. The resulting errors in transported flux, for high linear energy transfer (LET) particles, are comparble to these cross-section errors. In this overview, theoretical models of heavy ion fragmentation currently used to generate input data bases for cosmic-ray transport and shielding codes are reviewed. Their shortcomings are discussed. Further actions needed to improve their accuracy and generality are presented.  相似文献   

16.
航天员受银河宇宙线辐射的剂量计算   总被引:1,自引:0,他引:1  
在近地空间(LEO)和深空探测中,航天员遭受的辐射风险主要来自于银河宇宙线(GCR)照射.银河宇宙线的辐射剂量是航天员辐射风险评价的基础.国际放射防护委员会(ICRP)于2013年提出了新的航天员空间辐射剂量估算方法,以更准确给出空间重离子辐射的剂量.基于此方法,开发了宇宙线粒子在物质中输运的蒙特卡罗程序,并在程序中实现用中国成年男性人体数字模型来仿真航天员.采用该程序计算了粒子(Z=1~92)各向同性照射航天员时器官的通量-器官剂量转换因数,并估算出航天员在近地轨道空间受银河宇宙线辐射的剂量.  相似文献   

17.
For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR.  相似文献   

18.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   

19.
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints.  相似文献   

20.
Neurobiological problems in long-term deep space flights.   总被引:1,自引:0,他引:1  
Future missions in space may involve long-term travel beyond the magnetic field of the Earth, subjecting astronauts to radiation hazards posed by solar flares and galactic cosmic rays, altered gravitation fields and physiological stress. Thus, it is critical to determine if there will be any reversible or irreversible, detrimental neurological effects from this prolonged exposure to space. A question of particular importance focuses on the long-term effects of the space environment on the central nervous system (CNS) neuroplasticity, with the potential acute and/or delayed effects that such perturbations might entail. Although the short-term effects of microgravity on neural control were studied on previous low earth orbit missions, the late consequences of stress in space, microgravity and space radiation have not been addressed sufficiently at the molecular, cellular and tissue levels. The possibility that space flight factors can interact influencing the neuroplastic response in the CNS looms critical issue not only to understand the ontogeny of the CNS and its functional integrity, but also, ultimately the performance of astronauts in extended space forays. The purpose of this paper is to review the neurobiological modifications that occur in the CNS exposed to the space environment, and its potential consequences for extended deep space flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号