首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Increased computer capacity has made it possible to model the global plasma and neutral dynamics near Venus, Mars and Saturn??s moon Titan. The plasma interactions at Venus, Mars, and Titan are similar because each possess a substantial atmosphere but lacks a global internally generated magnetic field. In this article three self-consistent plasma models are described: the magnetohydrodynamic (MHD) model, the hybrid model and the fully kinetic plasma model. Chamberlain and Monte Carlo models of the Martian exosphere are also described. In particular, we describe the pros and cons of each model approach. Results from simulations are presented to demonstrate the ability of the models to capture the known plasma and neutral dynamics near the three objects.  相似文献   

2.
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow.  相似文献   

3.
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer (ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data, as well as multi-spacecraft observations.  相似文献   

4.
Krymskii  A.M.  Breus  T.K.  Ness  N. F  AcuÑa  M.H. 《Space Science Reviews》2000,92(3-4):535-564
The Mars Global Surveyor mission has revealed that localized crustal paleomagnetic anomalies are a common feature of the Southern Hemisphere of Mars. The magnetometer measured small-scale magnetic fields associated with many individual magnetic anomalies have magnitudes ranging from hundreds to thousands nT at altitude above 120 km. That makes Mars globally different from both Venus and Earth. The data collected by Lunar Prospector near the Moon were interpreted as evidence that above regions of inferred strong surface magnetic fields on the Moon the SW flow is deflected, and a small-scale mini-magnetosphere exists under some circumstances. With a factor of 100 stronger magnetic fields at Mars and a lower SW dynamic pressure, those conditions offer the opportunity for a larger size of small `magnetospheres' which can be formed by the crustal magnetic fields. Outside the regions of the magnetic anomalies, the SW/Mars interaction is Venus-like. Thus, at Mars the distinguishing feature of the magnetic field pile-up boundary most likely varies from Venus-like to Earth-like above the crustal magnetic field regions. The observational data regarding the IMF pile-up regions near Venus and the Earth are initially reviewed. As long as the SW/Mars interaction remains like that at Venus, the IMF penetrates deep into the Martian ionosphere under the `overpressure' conditions. Results of numerical simulations and theoretical expectations regarding the temporal evolution of the IMF inside the Venus ionosphere and appearance of superthermal electrons are also reviewed and assessed.  相似文献   

5.
Using data from the Mars Express Ion Mass Analyzer (IMA) we investigate the distribution of ion beams of planetary origin and search for an influence from Mars crustal magnetic anomalies. We have concentrated on ion beams observed inside the induced magnetosphere boundary (magnetic pile-up boundary). Some north-south asymmetry is seen in the data, but no longitudinal structure resembling that of the crustal anomalies. Comparing the occurrence rate of ion beams with magnetic field strength at 400 km altitude below the spacecraft (using statistical Mars Global Surveyor results) shows a decrease of the occurrence rate for modest (< 40 nT) magnetic fields. Higher magnetic field regions (above 40 nT at 400 km) are sampled so seldom that the statistics are poor but the data is consistent with some ion outflow events being closely associated with the stronger anomalies. This ion flow does not significantly affect the overall distribution of ion beams around Mars.  相似文献   

6.
An overview of the general characteristics of plasmas within the Earth's magnetotail and its environs is presented. Present knowledge of the plasmas within these regions as gained via in situ measurements provides the general theme, although observations of magnetic fields, energetic particles and plasma waves are included in the discussion. Primary plasma regimes in the magnetotail are the plasma sheet, its boundary layer, the magnetotail lobes, the boundary layer at the magnetopause and the distant magnetotail. Although great progress in our understanding of these regions is evident in the literature of the past several years, many of their features remain as exciting enigmas to be resolved by future observational and theoretical investigation.  相似文献   

7.
A total of about of 400 orbits during the first year of the ASPERA-3 operation onboard the Mars Express spacecraft were analyzed to obtain a statistical pattern of the main plasma domains in the Martian space environment. The environment is controlled by the direct interaction between the solar wind and the planetary exosphere/ionosphere which results in the formation of the magnetospheric cavity. Ionospheric plasma was traced by the characteristic “spectral lines” of photoelectrons that make it possible to detect an ionospheric component even far from the planet. Plasma of solar wind and planetary origin was distinguished by the ion mass spectrometry. Several different regions, namely, boundary layer/mantle, plasma sheet, region with ionospheric photoelectrons, ray-like structures near the wake boundary were identified. Upstream parameters like solar wind ram pressure and the direction of the interplanetary electric field were inferred as proxy from the Mars Global Surveyor magnetic field data at a reference point of the magnetic pile up region in the northern dayside hemisphere. It is shown that morphology and dynamics of the main plasma domains and their boundaries are governed by these factors as well as by local crustal magnetizations which add complexity and variability to the plasma and magnetic field environment.  相似文献   

8.
Connerney  J.E.P.  Acuña  M.H.  Ness  N.F.  Spohn  T.  Schubert  G. 《Space Science Reviews》2004,111(1-2):1-32
Mars lacks a detectable magnetic field of global scale, but boasts a rich spectrum of magnetic fields at smaller spatial scales attributed to the spatial variation of remanent magnetism in the crust. On average the Mars crust is 10 times more intensely magnetized than that of the Earth. It appears likely that the Mars crust acquired its remanence in the first few hundred million years of evolution when an active dynamo sustained an intense global field. An early dynamo era, ending in the Noachian, or earliest period of Mars chronology, would likely be driven by thermal convection in an early, hot, fluid core. If crustal remanence was acquired later in Mars history, a dynamo driven by chemical convection associated with the solidification of an inner core is likely. Thermal evolution models cannot yet distinguish between these two possibilities. The magnetic record contains a wealth of information on the thermal evolution of Mars and the Mars dynamo, but we have just begun to decipher its message.  相似文献   

9.
This paper reviews the present state of knowledge about the magnetic fields and the plasma interactions associated with the major satellites of Jupiter and Saturn. As revealed by the data from a number of spacecraft in the two planetary systems, the magnetic properties of the Jovian and Saturnian satellites are extremely diverse. As the only case of a strongly magnetized moon, Ganymede possesses an intrinsic magnetic field that forms a mini-magnetosphere surrounding the moon. Moons that contain interior regions of high electrical conductivity, such as Europa and Callisto, generate induced magnetic fields through electromagnetic induction in response to time-varying external fields. Moons that are non-magnetized also can generate magnetic field perturbations through plasma interactions if they possess substantial neutral sources. Unmagnetized moons that lack significant sources of neutrals act as absorbing obstacles to the ambient plasma flow and appear to generate field perturbations mainly in their wake regions. Because the magnetic field in the vicinity of the moons contains contributions from the inevitable electromagnetic interactions between these satellites and the ubiquitous plasma that flows onto them, our knowledge of the magnetic fields intrinsic to these satellites relies heavily on our understanding of the plasma interactions with them.  相似文献   

10.
Of the terrestrial planets, Earth and Mercury have self-sustained fields while Mars and Venus do not. Magnetic field data recorded at Ganymede have been interpreted as evidence of a self-generated magnetic field. The other icy Galilean satellites have magnetic fields induced in their subsurface oceans while Io and the Saturnian satellite Titan apparently are lacking magnetic fields of internal origin altogether. Parts of the lunar crust are remanently magnetized as are parts of the crust of Mars. While it is widely accepted that the magnetization of the Martian crust has been caused by an early magnetic field, for the Moon alternative explanations link the magnetization to plasma generated by large impacts. The necessary conditions for a dynamo in the terrestrial planets and satellites are the existence of an iron-rich core that is undergoing intense fluid motion. It is widely accepted that the fluid motion is caused by convection driven either by thermal buoyancy or by chemical buoyancy or by both. The chemical buoyancy is released upon the growth of an inner core. The latter requires a light alloying element in the core that is enriched in the outer core as the solid inner core grows. In most models, the light alloying element is assumed to be sulfur, but other elements such as, e.g., oxygen, silicon, and hydrogen are possible. The existence of cores in the terrestrial planets is either proven beyond reasonable doubt (Earth, Mars, and Mercury) or the case for a core is compelling as for Venus and the Moon. The Galilean satellites Io and Ganymede are likely to have cores judging from Galileo radio tracking data of the gravity fields of these satellites. The case is less clear cut for Europa. Callisto is widely taken as undifferentiated or only partially differentiated, thereby lacking an iron-rich core. Whether or not Titan has a core is not known at the present time. The terrestrial planets that do have magnetic fields either have a well-established inner core with known radius and density such as Earth or are widely agreed to have an inner core such as Mercury. The absence of an inner core in Venus, Mars, and the Moon (terrestrial bodies that lack fields) is not as well established although considered likely. The composition of the Martian core may be close to the Fe–FeS eutectic which would prevent an inner core to grow as long as the core has not cooled to temperatures around 1500 Kelvin. Venus may be on the verge of growing an inner core in which case a chemical dynamo may begin to operate in the geologically near future. The remanent magnetization of the Martian and the lunar crust is evidence for a dynamo in Mars’ and possibly the Moon’s early evolution and suggests that powerful thermally driven dynamos are possible. Both the thermally and the chemically driven dynamo require that the core is cooled at a sufficient rate by the mantle. For the thermally driven dynamo, the heat flow from the core into the mantle must by larger than the heat conducted along the core adiabat to allow a convecting core. This threshold is a few mW?m?2 for small planets such as Mercury, Ganymede, and the Moon but can be as large as a few tens mW?m?2 for Earth and Venus. The buoyancy for both dynamos must be sufficiently strong to overcome Ohmic dissipation. On Earth, plate tectonics and mantle convection cool the core efficiently. Stagnant lid convection on Mars and Venus are less efficient to cool the core but it is possible and has been suggested that Mars had plate tectonics in its early evolution and that Venus has experienced episodic resurfacing and mantle turnover. Both may have had profound implications for the evolution of the cores of these planets. It is even possible that inner cores started to grow in Mars and Venus but that the growth was frustrated as the mantles heated following the cessation of plate tectonics and resurfacing. The generation of Ganymede’s magnetic field is widely debated. Models range from magneto-hydrodynamic convection in which case the field will not be self-sustained to chemical and thermally-driven dynamos. The wide range of possible compositions for Ganymede’s core allows models with a completely liquid near eutectic Fe–FeS composition as well as models with Fe inner cores or cores in with iron snowfall.  相似文献   

11.
Mars and Venus do not have a global magnetic field and as a result solar wind interacts directly with their ionospheres and upper atmospheres. Neutral atoms ionized by solar UV, charge exchange and electron impact, are extracted and scavenged by solar wind providing a significant loss of planetary volatiles. There are different channels and routes through which the ionized planetary matter escapes from the planets. Processes of ion energization driven by direct solar wind forcing and their escape are intimately related. Forces responsible for ion energization in different channels are different and, correspondingly, the effectiveness of escape is also different. Classification of the energization processes and escape channels on Mars and Venus and also their variability with solar wind parameters is the main topic of our review. We will distinguish between classical pickup and ??mass-loaded?? pickup processes, energization in boundary layer and plasma sheet, polar winds on unmagnetized planets with magnetized ionospheres and enhanced escape flows from localized auroral regions in the regions filled by strong crustal magnetic fields.  相似文献   

12.
13.
Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon.  相似文献   

14.
Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth’s discrete aurora not only visualizes the inclination of the Earth’s magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas – field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration – the localized crustal magnetizations at Mars (Acuña et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA’s Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth – characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The “inverted V” energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars – the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars.  相似文献   

15.
Bow Shock and Upstream Phenomena at Mars   总被引:1,自引:0,他引:1  
Mazelle  C.  Winterhalter  D.  Sauer  K.  Trotignon  J.G.  Acuña  M.H.  Baumgärtel  K.  Bertucci  C.  Brain  D.A.  Brecht  S.H.  Delva  M.  Dubinin  E.  Øieroset  M.  Slavin  J. 《Space Science Reviews》2004,111(1-2):115-181
Mars Global Surveyor is the sixth spacecraft to return measurements of the Martian bow shock. The earlier missions were Mariner 4 (1964), Mars 2 and 3 (1972), Mars 5 (1975) and Phobos 2 (1989) (see reviews by Gringauz, 1981; Slavin and Holzer, 1982; Russell, 1985; Vaisberg, 1992a,b; Zakharov, 1992). Previous investigations of planetary bow shocks have established that their position, shape and jump conditions are functions of the upstream flow parameters and the nature of the solar wind — planet interaction (Spreiter and Stahara, 1980; Slavin et al., 1983; Russell, 1985). At Mars, however, the exact nature of the solar wind interaction was elusive due to the lack of low altitude plasma and magnetic field measurements (e.g., Axford, 1991). In fact our knowledge of the nature of the interaction of Mars with the solar wind was incomplete until the arrival of MGS and the acquisition of close-in magnetic field data (Acuña et al., 1998). As detailed by a series of review papers in this monograph, the Mars Global Surveyor (MGS) mission has now shown that the Mars environment is very complex with strong, highly structured crustal magnetic remnants in the southern hemisphere, while the northern hemisphere experiences the direct impingement of solar wind plasma. This review paper first presents a survey of the observations on the Martian bow shock and the upstream phenomena in the light of results from all the missions to date. It also discusses the kinetic properties of the Martian bow shock compared to the predictions of simulations studies. Then it examines the current status of understanding of these phenomena, including the possible sources of upstream low-frequency waves and the interpretations of localized disturbances in the upstream solar wind around Mars. Finally, it briefly discusses the open issues and questions that require further study.  相似文献   

16.
Two ideas were advanced for the process of solar wind-magnetospheric interaction in the same year 1961. Dungey suggested that the interplanetary magnetic field (IMF), although weak, might determine the nature of this process by magnetic reconnection as the solar wind plasma flows across the separatrix surface which divides the IMF from the geomagnetic field. Axford and Hines pointed out that the flow inside the magnetopause is in the same sense as the magnetosheath flow and appears to be viscously coupled. Within a few years the dependence of geomagnetic activity on the IMF predicted by Dungey's mechanism was observed, and reconnection began to dominate current theories. One difficulty, that of the implied dissipation at the magnetopause, was troublesome; however, the ISEE-1/2 observations of the predicted high speed flows on several occasions was enough to convince many persons that reconnection ideas were basically correct. Several investigators found some evidence in the ISEE-3 data in the distant magnetotail for the steady-state reconnection line, as demanded by the Dungey model, in the form of a southward sense of the magnetic field through the current sheet. Here, again, there is some hard contrary evidence when the data are analyzed exactly at the cross-tail current sheet: the instantaneous values show a northward sense, even at high values of auroral activity. Coupled with the anti-Sunward plasma flow, this repudiates the steady-state Dungey model. On the other hand, it lends strong support to some kind of viscous effect through the medium of the magnetospheric boundary layer. This is not a semantic problem, as the sense of the electric field (as well as the magnetic field) is opposite for the two cases. The downfall of the reconnection model is its implicit use of frozen-field convection; this problem is obvious when the problem is viewed in three dimensions. Instead, the view is taken that the relevant process must be essentially time-dependent, three-dimensional, and localized. It is proposed that the term merging be used for this generalized timedependent form of reconnection. The merging process (whatever it is) must permit solar wind plasma to cross the magnetopause onto closed field lines of the boundary layer. Once it is there, it provides the viscous-like effect that Axford and Hines had envisaged.  相似文献   

17.
Present natural data bases for abundances of the isotopic compositions of noble gases, carbon and nitrogen inventories can be found in the Sun, the solar wind, meteorites and the planetary atmospheres and crustal reservoirs. Mass distributions in the various volatile reservoirs provide boundary conditions which must be satisfied in modelling the history of the present atmospheres. Such boundary conditions are constraints posed by comparison of isotopic ratios in primordial volatile sources with the isotopic pattern which was found on the planets and their satellites. Observations from space missions and Earth-based spectroscopic telescope observations of Venus, Mars and Saturn's major satellite Titan show that the atmospheric evolution of these planetary bodies to their present states was affected by processes capable of fractionating their elements and isotopes. The isotope ratios of D/H in the atmospheres of Venus and Mars indicate evidence for their planetary water inventories. Venus' H2O content may have been at least 0.3% of a terrestrial ocean. Analysis of the D/H ratio on Mars imply that a global H2O ocean with a depth of ≤ 30 m was lost since the end of hydrodynamic escape. Calculations of the time evolution of the 15N/14N isotope anomalies in the atmospheres of Mars and Titan show that the Martian atmosphere was at least ≥ 20 times denser than at present and that the mass of Titan's early atmosphere was about 30 times greater than its present value. A detailed study of gravitational fractionation of isotopes in planetary atmospheres furthermore indicates a much higher solar wind mass flux of the early Sun during the first half billion years. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.  相似文献   

19.
Blanc  M.  Bolton  S.  Bradley  J.  Burton  M.  Cravens  T.E.  Dandouras  I.  Dougherty  M.K.  Festou  M.C.  Feynman  J.  Johnson  R.E.  Gombosi  T.G.  Kurth  W.S.  Liewer  P.C.  Mauk  B.H.  Maurice  S.  Mitchell  D.  Neubauer  F.M.  Richardson  J.D.  Shemansky  D.E.  Sittler  E.C.  Tsurutani  B.T.  Zarka  Ph.  Esposito  L.W.  Grün  E.  Gurnett  D.A.  Kliore  A.J.  Krimigis  S.M.  Southwood  D.  Waite  J.H.  Young  D.T. 《Space Science Reviews》2002,104(1-4):253-346
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them. Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other. Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth??s. It also has a significant ionosphere, which is usually immersed in Saturn??s magnetosphere. Occasionally it exits into Saturn??s magnetosheath. In this paper we review several recent advances in our understanding of Titan??s ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号