首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We investigate numerically the dynamical evolution of a boundary driven, topologically complex low plasma. The initial state is a simple, but topologically nontrivial 3D magnetic field, and the evolution is driven by forced motions on two opposite boundaries of the computational domain. A large X-type reconnection event with a supersonic one-sided jet occurs as part of a process that brakes down the large scale topology of the initial field. An energetically steady state is reached, with a double arcade overall topology, in which the driving causes continuous creation of small scale thin current sheets at various locations in the arcade structures.  相似文献   

2.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.  相似文献   

3.
Consequences of the solar wind input observed as large scale magnetotail dynamics during substorms are reviewed, highlighting results from statistical studies as well as global magnetosphere/ionosphere observations. Among the different solar wind input parameters, the most essential one to initiate reconnection relatively close to the Earth is a southward IMF or a solar wind dawn-to-dusk electric field. Larger substorms are associated with such reconnection events closer to the Earth and the magnetotail can accumulate larger amounts of energy before its onset. Yet, how and to what extent the magnetotail configuration before substorm onset differs for different solar wind driver is still to be understood. A strong solar wind dawn-to-dusk electric field is, however, only a necessary condition for a strong substorm, but not a sufficient one. That is, there are intervals when the solar wind input is processed in the magnetotail without the usual substorm cycle, suggesting different modes of flux transport. Furthermore, recent global observations suggest that the magnetotail response during the substorm expansion phase can be also controlled by plasma sheet density, which is coupled to the solar wind on larger time-scales than the substorm cycle. To explain the substorm dynamics it is therefore important to understand the different modes of energy, momentum, and mass transport within the magnetosphere as a consequence of different types of solar wind-magnetosphere interaction with different time-scales that control the overall magnetotail configuration, in addition to the internal current sheet instabilities leading to large scale tail current sheet dissipation.  相似文献   

4.
R. P. Lin 《Space Science Reviews》2011,159(1-4):421-445
RHESSI measurements relevant to the fundamental processes of energy release and particle acceleration in flares are summarized. RHESSI??s precise measurements of hard X-ray continuum spectra enable model-independent deconvolution to obtain the parent electron spectrum. Taking into account the effects of albedo, these show that the low energy cut-off to the electron power-law spectrum is typically ?tens of keV, confirming that the accelerated electrons contain a large fraction of the energy released in flares. RHESSI has detected a high coronal hard X-ray source that is filled with accelerated electrons whose energy density is comparable to the magnetic-field energy density. This suggests an efficient conversion of energy, previously stored in the magnetic field, into the bulk acceleration of electrons. A new, collisionless (Hall) magnetic reconnection process has been identified through theory and simulations, and directly observed in space and in the laboratory; it should occur in the solar corona as well, with a reconnection rate fast enough for the energy release in flares. The reconnection process could result in the formation of multiple elongated magnetic islands, that then collapse to bulk-accelerate the electrons, rapidly enough to produce the observed hard X-ray emissions. RHESSI??s pioneering ??-ray line imaging of energetic ions, revealing footpoints straddling a flare loop arcade, has provided strong evidence that ion acceleration is also related to magnetic reconnection. Flare particle acceleration is shown to have a close relationship to impulsive Solar Energetic Particle (SEP) events observed in the interplanetary medium, and also to both fast coronal mass ejections and gradual SEP events. New instrumentation to provide the high sensitivity and wide dynamic range hard X-ray and ??-ray measurements, plus energetic neutral atom (ENA) imaging of SEPs above ??2 R??, will enable the next great leap forward in understanding particle acceleration and energy release is large solar eruptions??solar flares and associated fast coronal mass ejections (CMEs).  相似文献   

5.
We review generation mechanisms of Birkeland currents (field-aligned currents) in the magnetosphere and the ionosphere. Comparing Birkeland currents predicted theoretically with those studied observationally by spacecraft experiments, we present a model for driving mechanism, which is unified by the solar wind-magnetosphere interaction that allows the coexistence of steady viscous interaction and unsteady magnetic reconnection. The model predicts the following: (1) the Region 1 Birkeland currents (which are located at poleward part of the auroral Birkeland-current belt, and constitute quasi-permanently and stably a primary part of the overall system of Birkeland currents) would be fed by vorticity-induced space charges at the core of two-cell magnetospheric convection arisen as a result of viscous interaction between the solar wind and the magnetospheric plasma, (2) the Region 2 Birkeland currents (which are located at equatorward part of the auroral Birkeland-current belt, and exhibit more variable and localized behavior) would orginate from regions of plasma pressure inhomogeneities in the magnetosphere caused by the coupling between two-cell magnetospheric convection and the hot ring current, where the gradient-B current and/or the curvature current (presumably the hot plasma sheet-ring current) are forced to divert to the ionosphere, (3) the Cusp Birkeland currents (which are located poleward of and adjacent to the Region 1 currents and are strongly controlled by the interplanetary magnetic field (IMF)) might be a diversion of the inertia current which is newly and locally produced in the velocity-decelerated region of earthward solar wind where the magnetosphere is eroded by dayside magnetic reconnection, (4) the nightside Birkeland currents which are connected to a part of the westward auroral electrojet in the Harang discontinuity sector might be a diversion of the dusk-to-dawn tail current resulting from localized magnetic reconnection in the magnetotail plasma sheet where plasma density and pressure are reduced.  相似文献   

6.
Two ideas were advanced for the process of solar wind-magnetospheric interaction in the same year 1961. Dungey suggested that the interplanetary magnetic field (IMF), although weak, might determine the nature of this process by magnetic reconnection as the solar wind plasma flows across the separatrix surface which divides the IMF from the geomagnetic field. Axford and Hines pointed out that the flow inside the magnetopause is in the same sense as the magnetosheath flow and appears to be viscously coupled. Within a few years the dependence of geomagnetic activity on the IMF predicted by Dungey's mechanism was observed, and reconnection began to dominate current theories. One difficulty, that of the implied dissipation at the magnetopause, was troublesome; however, the ISEE-1/2 observations of the predicted high speed flows on several occasions was enough to convince many persons that reconnection ideas were basically correct. Several investigators found some evidence in the ISEE-3 data in the distant magnetotail for the steady-state reconnection line, as demanded by the Dungey model, in the form of a southward sense of the magnetic field through the current sheet. Here, again, there is some hard contrary evidence when the data are analyzed exactly at the cross-tail current sheet: the instantaneous values show a northward sense, even at high values of auroral activity. Coupled with the anti-Sunward plasma flow, this repudiates the steady-state Dungey model. On the other hand, it lends strong support to some kind of viscous effect through the medium of the magnetospheric boundary layer. This is not a semantic problem, as the sense of the electric field (as well as the magnetic field) is opposite for the two cases. The downfall of the reconnection model is its implicit use of frozen-field convection; this problem is obvious when the problem is viewed in three dimensions. Instead, the view is taken that the relevant process must be essentially time-dependent, three-dimensional, and localized. It is proposed that the term merging be used for this generalized timedependent form of reconnection. The merging process (whatever it is) must permit solar wind plasma to cross the magnetopause onto closed field lines of the boundary layer. Once it is there, it provides the viscous-like effect that Axford and Hines had envisaged.  相似文献   

7.
Analytical studies of reconnection have, for the most part, been confined to steady and uniform current sheet geometries. In contrast to these implifications, natural phenomena associated with the presence of current sheets indicate highly non-uniform structure and time-varying behaviour. Examples include the violent outbursts of energy on the Sun known as solar flares, and magnetospheric phenomena such as flux transfer events, plasmoids, and auroral activity. Unlike the theoretical models, reconnection therefore occurs in a highly dynamic and structured plasma environment. In this article we review the mathematical tools and techniques which are available to formulate models capable of describing the effects of reconnection in such situations. We confine attention to variants of the reconnection model first discussed by Petschek in the 1960s, in view of its successful application in predicting and interpreting phenomena in the terrestrial magnetosphere. The analysis of Petschek-type reconnection is based on the equations of ideal magnetohydrodynamics (MHD), which describe the large-scale behaviour of the magnetic field and plasma flow outside the diffusion region, which we determine as a localised part of the current sheet in which reconnection is initiated. The approach we adopt here is to transform the MHD equations into a Lagrangian or so-called 'frozen-in' coordinate system. In this coordinate system, the equation of motion transforms into a set of coupled nonlinear equations, in which the presence of inhomogeneous magnetic fields and/or plasma flows gives rise to a term similar to that which appears in the study of the ordinary string equation in a non-homogeneous medium. As demonstrated here, this approach not only clarifies and highlights the effects of such non-uniformities, it also simplifies the solution of the original set of MHD equations. In particular, this is true for those types of problem in which the total pressure can be considered as a known quantity from the outset. To illustrate the method, we solve several 2D problems involving magnetic field and flow non-uniformities: reconnection in a stagnation-point flow geometry with antiparallel magnetic fields; reconnection in a Y-type magnetic field geometry with and without velocity shear across the current sheet; and reconnection in a force-free magnetic field geometry with field lines of the form xy = const. These case examples, chosen for their tractability, each incorporate some aspects of the field and flow geomtries encountered in solar-terrestrial applications, and they provide a starting point for further analytical as well as numerical studies of reconnection.  相似文献   

8.
This review considers the theory of the magnetic field line reconnection and its application to the problem of the interaction between the solar wind and the Earth's magnetosphere. In particular, we discuss the reconnection models by Sonnerup and by Petschek (for both incompressible and compressible plasmas, for the asymmetric and nonsteady-state cases), the magnetic field annihilation model by Parker; Syrovatsky's model of the current sheet; and Birn's and Schindler's solution for the plasma sheet structure. A review of laboratory and numerical modelling experiments is given.Results concerning the field line reconnection, combined with the peculiarities of the MHD flow, were used in investigating the solar wind flow around the magnetosphere. We found that in the presence of a frozen-in magnetic field, the flow differs significantly from that in a pure gas dynamic case; in particular, at the subsolar. part of the magnetopause a stagnation line appears (i.e., a line along which the stream lines are branching) instead of a stagnation point. The length and location of the stagnation line determine the character of the interaction of the solar wind with the Earth's magnetosphere. We have developed the theory of that interaction for a steady-state case, and compare the results of the calculations with the experimental data.In the last section of the review, we propose a qualitative model of the solar wind — the Earth's magnetosphere interaction in the nonsteady-state case on the basis of the solution of the problem of the spontaneous magnetic field line reconnection.  相似文献   

9.
Interchange reconnection at the Sun, that is, reconnection between a doubly-connected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole boundary, where open fields meet closed loops. The second aspect concerns the means by which the heliospheric magnetic field strength reached record-lows during the recent solar minimum period. A?new implication of this work is that interchange reconnection may be responsible for the puzzling, occasional coincidence of the heliospheric current sheet and the interface between fast and slow flow in the solar wind.  相似文献   

10.
We review progress in understanding the dynamics of a typical magnetic reconnection layer by describing the historical development of theory and the recent findings and discoveries in space and laboratory plasmas. The emphasis is on the dynamics of electrons moving with respect to ions in the collision-free neutral sheet. We make a detailed comparison of experimental results from the Magnetic Reconnection Experiment (MRX) with those from theory and numerical simulations. The collaboration between space and laboratory scientists on reconnection research has recently reached a point where we can compare measurements of the reconnection layer profile in detail with support from numerical simulations. In spite of the large difference in physical scales by 106?C107, we find remarkable commonalities in the features of the magnetic reconnection region in laboratory and magnetospheric plasmas. A newly planned laboratory experiment, in which a current sheet is swept in the way a magnetosphere current sheet crosses space satellites, is also described.  相似文献   

11.
It is only within the last 5 years that we have learned how to recognize the unambiguous signature of magnetic reconnection in the solar wind in the form of roughly Alfvénic accelerated plasma flows embedded within bifurcated magnetic field reversal regions (current sheets). This paper provides a brief overview of what has since been learned about reconnection in the solar wind from both single and multi-spacecraft observations of these so-called reconnection exhausts.  相似文献   

12.
Recent analyses of spacecraft data, especially AMPTE/IRM data, provide a test of reconnection theory; an analysis for the signature of a local tangential stress balance in a one-dimensional time-stationary rotational discontinuity has left crucial questions unanswered. A key result is that the electron temperature profile inward through the magnetopause current sheet shows heating followed by cooling. Electrons must be one of the carriers of the current; hence this result reflects the sign of E · J in the frame of reference of the magnetopause current carriers. Since the current is directed from dawn to dusk, the inescapable conclusion is that the electric field must reverse within the current sheet. This is direct evidence of a load–dynamo combination; in that dynamo, energy is transferred from the solar wind plasma to the electromagnetic field. A dynamo is not included in the reconnection model which includes only the electrical load; therefore, we argue that the reconnection problem is improperly posed. A second compelling observation is a remarkable difference of the normal component of the plasma velocity between inbound and outbound crossings. For an inbound crossing (outward current meander) this component does reverse, but not quite as assumed in the reconnection model; on the other hand, for outbound crossings of the spacecraft (corresponding to erosion) there is no reversal at all. The normal component is approximately constant at 20 km s-1, anti-Sunward throughout. Since the typical motion of the magnetopause is 10 km s-1 this revealing result shows that solar wind plasma can go across the magnetopause, even onto closed field lines to feed the low latitude boundary layer. This is in stark contrast to the reconnection model where the plasma goes to open field lines. The interaction can be understood by appealing to Poynting's theorem, where E · J describes the net effect on or by the plasma. Time-dependent terms (even in the initial conditions) must be used so that it is possible to draw upon energy which has been stored locally in both electrical and magnetic forms. An extended discussion of observational results from ground-based, rocket, and satellite instruments indicate the impulsive nature of the solar wind–magnetospheric interaction. There is a lot of plasma involved in this interaction, over 1027 ions electrons-1 per second; the anti-Sunward flow takes place in the low latitude boundary layer. There is no flux catastrophe produced by this flow since the frozen-field theorem does not hold for plasma transfer across the magnetopause. The LLBL completely envelops the plasma sheet; the LLBL is the source of its plasma, not the plasma mantle as hypothesized in the reconnection model of the magnetotail. A number of serious errors have occurred in some articles in the literature on reconnection, and we list and discuss the most important of these. In the conclusion it is emphasized that the failure to provide a viable energy source, within the necessary spatial and temporal constraints, is responsible for the failure of reconnection model. This does not mean that the state of interconnection between the geomagnetic field and the interplanetary magnetic field can not change, but it does mean that the advocated process is not relevant to such changes. True reconnection requires that the electric field has a curl so that an electromotive force = E · dl = -dMdt exists through which energy can be interchanged with stored magnetic energy.  相似文献   

13.
Basic mechanisms of the hydrodynamic shock wave formation in the solar atmosphere during flares are considered. Hydrodynamic plasma flows during flares arise due to fast energy release which is accumulated in the magnetic field of currents in the solar atmosphere. Shock waves arise as a result of rapid heating of the chromospheric upper layers from accelerated particles or heat fluxes. Powerful hydrodynamic phenomena can also arise due to explosive current sheet disruption in the region of strong magnetic field reconnection. Fundamental questions of shock wave formation and propagation in a non-homogeneous emitting solar atmosphere are discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

14.
Some theoretical aspects of solar coronal streamers are discussed with emphasis on the current sheet and reconnection processes going on along the axis of the streamer. The dynamics of the streamer is a combination of MHD and transport, with acceleration of particles due to reconnection and leakage of plasma outwards as a slow solar wind as the observable results. The presence of the almost-closed magnetic bottles of streamers that can store high-energy particles for significant times provides the birdcage for solar cosmic rays, the reconnection in the sheet feeds medium-energy protons into the corona for the large-scale storage needed for certain flare models, and the build-up of excess density sets the stage for coronal mass ejections.  相似文献   

15.
In large-scale systems of interest to solar physics, there is growing evidence that magnetic reconnection involves the formation of extended current sheets which are unstable to plasmoids (secondary magnetic islands). Recent results suggest that plasmoids may play a critical role in the evolution of reconnection, and have raised fundamental questions regarding the applicability of resistive MHD to various regimes. In collisional plasmas, where the thickness of all resistive layers remain larger than the ion gyroradius, simulations results indicate that plasmoids permit reconnection to proceed much faster than the slow Sweet-Parker scaling. However, it appears these rates are still a factor of ~10× slower than observed in kinetic regimes, where the diffusion region current sheet falls below the ion gyroradius and additional physics beyond MHD becomes crucially important. Over a broad range of interesting parameters, the formation of plasmoids may naturally induce a transition into these kinetic regimes. New insights into this scenario have emerged in recent years based on a combination of linear theory, fluid simulations and fully kinetic simulations which retain a Fokker-Planck collision operator to allow a rigorous treatment of Coulomb collisions as the reconnection electric field exceeds the runaway limit. Here, we present some new results from this approach for guide field reconnection. Based upon these results, a parameter space map is constructed that summarizes the present understanding of how reconnection proceeds in various regimes.  相似文献   

16.
Magnetic Reconnection Phenomena In Interplanetary Space   总被引:3,自引:0,他引:3  
Wei  Fengsi  Hu  Qiang  Feng  Xueshang  Fan  Quanlin 《Space Science Reviews》2003,107(1-2):107-110
Interplanetary magnetic reconnection(IMR) phenomena are explored based on the observational data with various time resolutions from Helios, IMP-8, ISEE3, Wind, etc. We discover that the observational evidence of the magnetic reconnection may be found in the various solar wind structures, such as at the boundary of magnetic cloud, near the current sheet, and small-scale turbulence structures, etc. We have developed a third order accuracy upwind compact difference scheme to numerically study the magnetic reconnection phenomena with high-magnetic Reynolds number (R M=2000–10000) in interplanetary space. The simulated results show that the magnetic reconnection process could occur under the typical interplanetary conditions. These obtained magnetic reconnection processes own basic characteristics of the high R M reconnection in interplanetary space, including multiple X-line reconnection, vortex velocity structures, filament current systems, splitting, collapse of plasma bulk, merging and evolving of magnetic islands, and lifetime in the range from minutes to hours, etc. These results could be helpful for further understanding the interplanetary basic physical processes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the “CR-B” relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.  相似文献   

18.
Interplanetary origin of geomagnetic storms   总被引:8,自引:0,他引:8  
Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms, involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic field strengths, thus both contributing to the development of intense storms since those two parameters are important factors in genering the solar wind-magnetosphere coupling via the reconnection process. During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity, and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs). Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary manifestations of subsequent CMEs, can lead to extremely intense storms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Transient phenomena in the magnetotail and their relation to substorms   总被引:1,自引:0,他引:1  
Recent observations of magnetic field, plasma flow and energetic electron anisotropies in the magnetotail plasma sheet during substorms have provided strong support for the idea that a magnetospheric substorm involves the formation of a magnetic neutral line (the substorm neutral line) within the plasma sheet at X SM — 10R E to -25R E. An initial effect, in the tail, of the neutral line's formation is the severance of plasma sheet field lines to form a plasmoid, i.e., a closed magnetic loop structure, that is quickly (within 5–10 min) ejected from the tail into the downstream solar wind. The plasmoid's escape leaves a thin downstream plasma sheet through which plasma and energetic particles stream continuously into the solar wind, often throughout the duration of the substorm's expansive phase. Southward oriented magnetic field threads this tailward-flowing plasma but its detection, as an identifier of the occurrence of magnetic reconnection, is made difficult by the thinness and turbulence of the downstream plasma sheet. The thinning of the plasma sheet downstream of the neutral line is observed, by satellites located anywhere but very close to the tail's midplane, as a plasma dropout. Multiple satellite observations of plasma droputs suggest that the substorm neutral line often extends across a large fraction (> ) of the tail's breadth. Near the time of substorm recovery the substorm neutral line moves quickly tailward to a more distant location, progressively inflating the closed field lines earthward of it, to reform the plasma sheet.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号