首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
在分析地球同步卫星漂移率和偏心率控制原理的基础上,提出了应用太阳同步偏心率控制模式,对经度漂移率和偏心率进行单脉冲联合控制的策略。该策略通过缩小漂移环半宽和偏心率保持圆半径的方法构建轨道修正模型,使得在太阳同步偏心率控制模式下,漂移率和偏心率控制所需速度增量相等且两者位保周期相同。数学模型和仿真结果表明,应用该策略进行东西位保,全年所需速度增量等于漂移率控制所需速度增量且轨控时刻固定,可以使漂移率和偏心率都达到精度要求。  相似文献   

2.
针对在偏心率隔离情况下,由于共位双星半长轴并不完全相同,导致双星平经度差不断增加的情况,讨论了平经度与偏心率联合偏置情况下的双星共位控制策略.该策略通过计算得到双星允许的最大平经度差,控制双星漂移过程中的平经度差保持在允许的范围,确保在偏心率偏置条件下实现双星的安全隔离.理论和算例表明,双星共位的控制周期与卫星的测控精度有关,随着测控精度的提高,双星共位的控制周期可以等于每颗星的东西位置保持周期.  相似文献   

3.
本文推广了Kamel的东西定点保持分析结果,并提出了一种算法,该算法的目的是使地球同步卫星从某一指定定点区内的任一给定相对经度偏差开始。进入理想的初始条件以便重复这种理想的经度漂移循环,使两次机动之间的时间尽可能长。描述卫星运动时考虑了地球的田谐摄动和日月引力摄动,假定为近圆轨道,只需要经过一次速度脉动变化进行轨道能量控制就能重复这种理想的漂移循环。沿轨道进行机动的位置这样选择,即使得在△V作用后偏心率总为最小。  相似文献   

4.
在北斗GEO(Geostationary Earth Orbit,地球静止轨道)卫星南北控制期间,陀螺漂移、姿态控制、轨道平面变化等因素都会对卫星轨道半长轴产生影响,进而影响卫星星下点经度漂移,而在实际工程中难以提前准确预估南北控制对半长轴的影响。根据GEO卫星南北控制特点,分析了各因素对半长轴影响的原因,通过影响因素剥离的方法建立了各因素对半长轴影响的模型,利用在轨GEO卫星历次南北控制的实际数据,验证了模型的准确性并给出了各个因素的影响量级。结果表明,该模型可使得南北控制对半长轴影响的预测精度达到1 km以内,可用于北斗GEO卫星南北控制时半长轴补偿控制。  相似文献   

5.
一、前言发射静止卫星的关键技术在于使卫星由转移轨道经漂移轨道进入静止轨道(变轨技术),最后使卫星静止于指定的经度(定点技术)。从卫星用户的角度来看,重要的问题是卫星进入静止轨道之后的位置保持和定点管理。国际电联规定,通信卫星定点经度的变化范围不能超过±0.1°;对今后某些区域性通信卫星  相似文献   

6.
针对我国中继卫星系统组网备份策略问题,在分析国外中继卫星系统有关情况,尤其是美国中继卫星系统组网备份策略的基础上,讨论了我国中继卫星系统组网备份的途径,针对我国实际情况提出了目前宜采用发射备份星进行备份的策略,后续应考虑具备轨位漂移能力实现系统重构的备份策略。分析了我国组网备份的技术能力,研究了轨位漂移、多星共位控制和规划调整等技术手段,提出了为具备漂移能力而带来的技术问题及其解决途径,并指出了后续研究的方向。  相似文献   

7.
针对晨昏轨道演化问题,根据不同摄动源对半长轴、偏心率矢量、倾角矢量进行公式推导与演化分析,并重点对降交点地方时漂移进行分析,证明晨昏点的简谐振荡特性向开口向上的抛物线漂移特性转化,最后结合实际的轨道动力学数据进行检验.结果表明,通过准确的入轨控制,可以实现晨昏轨道的降交点地方时十余年的长时间保持,既保障了卫星具有良好光照和能源供给,同时又能应用于长寿命卫星在轨测控与管理的能源预测、轨道数据注入核查等方面.  相似文献   

8.
地球同步三轴稳定卫星在南北保持控制过程中,存在较大的东西方向耦舍量。实践中,在南北控制结束后,直接进行东西向轨道修正。给出了卫星寿命初期和中期东西修正量的计算模型,并在实际控制中取得了良好的效果。  相似文献   

9.
提出一种新的地球同步在轨自旋卫星东西位置保持控制策略,它可以在给定控制精度下,达到传统算法同样的控制效果,但大大简化了过去算法的复杂性.同时还进一步分析了影响自旋卫星轨控效率的因素,给出了相应的提高措施,这些方法都已成功地运用到我国风云二号卫星的在轨工程测控上.  相似文献   

10.
有相当多的近地轨道对地观测卫星都采用近圆形太阳同步、回归轨道。采用该轨道的主要原因是满足遥感系统的要求。因为利用可见光照相的遥感系统,要求有一定的光照条件并希望这样的光照条件尽可能不变。对于采用单自由度太阳帆板的卫星也需要采用太阳同步轨道来保证卫星的正常供电。回归轨道也称为地面轨迹重复的轨道,它的地面轨迹是均匀分布的,因此可以最有效地利用遥感系统对地面的覆盖,而且可以实现对任一地区的定期动态观测。由于大气阻力的影响,轨道高度会不断降低,轨道周期不断缩短,这就导致地面轨迹的向东漂移。各条轨迹的漂移量是不一样的,这就导致回归模式的破坏,最终影响飞行使命的完成。因此对于长寿命的对地观测卫星来说,都有一个轨迹控制的任务,即要对轨道作定期的调整,使实际的轨迹控制在标称轨迹附近的一定的范围内。本文推导了轨迹漂移的一般表达式,并在此基础上讨论了轨迹控制的模型,给出了计算轨道调整量及调整周期的公式。  相似文献   

11.
给出了计划航路时可能会用到的计算特殊航路点(诸如航路与航路或与管制区边界的交叉点)的经纬度坐标的公式,并针对各种情况做了计算验证。  相似文献   

12.
某地球同步三轴卫星因故障导致推力器工作效率不稳定,使得采用原有方案进行向西轨道控制时姿态变化大,控制准确度降低.针对上述问题,通过分析卫星用于姿态控制的偏置动量轮的控制规律,利用星体角动量守恒条件,建立了偏置动量轮转速变化与轨道半长轴变化之间的相关性数学模型,提出了一种改进的基于偏置动量轮转速标定的轨道控制方法,同时结合姿态的稳定变化制定了轨道控制实施方案,并将其应用于实际卫星轨道控制中,取得了良好的控制效果.改进的控制方法提高了轨道控制的准确率,使得半长轴误差幅度由最大60%提高到0.2%左右,增加了姿态的稳定性,使得俯仰姿态变化幅度由最大0.7°减小到0.2°左右,降低了控制风险,减轻了地面控制人员的负担.  相似文献   

13.
目前环形刀具的刀位算法均未考虑圆刀片安装时存在的俯仰角和偏转角,因而在理论上存在较大的编程误差。针对实际使用刀具为非圆截面环形刀具的情况,通过对环形刀具的截面曲线进行分析,提出了一种基于经线划分的非圆截面环形刀具刀位优化算法。首先利用经线法求解出刀具表面和工件曲面之间的误差分布,然后根据此误差分布来调整刀具位置和姿态,使刀具表面与设计曲面在不发生干涉的情况下实现密切接触,从而得到刀具在指定定位点处的最优刀位。仿真结果表明,传统的五坐标刀位算法会产生较大的加工误差,而本文提出的算法消除了圆刀片安装时存在的俯仰角和偏转角所引起的加工误差,可有效提高复杂曲面的加工精度并获得满足给定编程公差的优化刀位。  相似文献   

14.
在飞机选型中对各机型进行性能分析、经济性评估或编制飞行计划软件时,常需要根据航段两端点的经纬度坐标计算该航段的大圆距离及航向,在沿大圆航线飞行时也需要知道航路上各点的真航向及磁航向。本文用矢量方法导出了根据起止点的经纬度坐标计算该航段大圆距离及大圆航向的公式以及沿大圆航线飞行时根据给定点的经度计算其纬度和真航向的公式,并且用算例做了验证,结果表明这些公式是正确的。  相似文献   

15.
16.
Three transformation formulas that relate the quaternions to the direction cosine matrix used in strapdown inertial systems are derived. An error model associated with the computed direction cosine matrix is briefly discussed. Error analysis is fully evaluated analytically and tabulated for comparison. Transformation errors associated with these formulas are analyzed. The drift errors evaluated under constant angular velocity are shown to vary slightly among three different transformations. It is shown that the skew errors in three transformation schemes are not all intrinsically zero. The scale errors may differ largely by two orders of magnitude among transformation schemes. This may become a criteria for selection of altitude transformation schemes  相似文献   

17.
Three collocation strategies are planned and analyzed for the cluster of two geostationary orbit (GEO) satellites and one inclined geosynchronous orbit (GSO) satellite in the same longitude control band of 116°E±0.05° . The longitudinal control bands are allocated for the two GEO satellites and one inclined GSO satellite with seven-day East/West station-keeping maneuver cycle. The latitudinal control bands are allocated for the two GEO satellites with fourteen-day North/South station-keeping maneuver cycle. One inclined GSO satellite is allowed for natural inclination drift. The coordinated eccentricity vector and inclination vector separation method is applied for the collocation, and the maneuver schedule is planned to minimize the operational load by avoiding simultaneous maneuvers. A total of six months of station-keeping maneuver simulations are performed for the three different strategies.  相似文献   

18.
Between June and November of 1970, 26 constant level balloons were released from Ascension Island (8 S) for flight at 30 and 50 mb. The balloons were positioned by the Interrogation, Recording and Location System (IRLS) aboard the Nimbus D satellite. In general, balloon positioning appeared to be accurate to within a few kilometers, although occasionally there was doubt as to whether the balloon position was to the right or left of the satellite subtrack. Eight of the flights at 50 mb and three of the flights at 30 mb were tracked for more than one month, and one 50 mb flight was tracked continuously for more than 5 months while making 7 circumnavigations of the Earth. From the satellite-determined 12-hourly balloon positions in the tropics, 223 smoothed 24-hour-average zonal and meridional winds were obtained at 30 mb and 693 such winds were obtained at 50 mb. Near the equator the balloons moved from east to west at a speed of about 23 ms–1 at 50 mb and 28 ms–1 at 30 mb, while undergoing a mean northward drift of approximately 0.1 ms–1. The northward drift was a maximum in the Northern Hemisphere winter, suggesting a weak upward extension of the Hadley Cell to 50 mb. Superimposed on this drift were oscillations in meridional velocity of about 2-month period, with these oscillations also most pronounced in the Northern Hemisphere winter. Small (1–3 ms–1) short-period fluctuations in meridional velocity were evident directly above the equator at 50 mb. These waves appear to move westward at speeds of 30–40 ms–1 and to have a wavelength of about 90° longitude. They were responsible for transporting small amounts of westerly momentum into the winter hemisphere. Fluctuations in zonal velocity (Kelvin waves) were also delineated by flights near the equator. These waves appear to move eastward at speeds of 30–40 ms–1 and to have a wavelength of 360° longitude. Some comparisons are made between these IRLS data and the data obtained from GHOST balloon flights at the same heights in early 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号