首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The downward field-aligned current region plays an active role in magnetosphere-ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. A wealth of related phenomena, including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from sounding rockets and satellites, such as Freja, FAST, Viking, and Cluster, to illustrate the characteristics of the electric fields and related parameters, at altitudes below, within, and above the acceleration region. Special emphasis will be on the high-altitude characteristics and dynamics of quasi-static electric field structures observed by Cluster. These structures, which extend up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former are found to occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at soft plasma boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft indicates that the formation of the electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current often seen is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures appear to be decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The mapping depends on the current-voltage relationship in the downward current region, which is highly non-linear and still unclear, as to its specific form.  相似文献   

2.
The ionosphere of Mars has been explored mostly with the radio occultation experiment onboard Mariners 6, 7, 9; Mars 2, 3, 4, 6; Viking 1, 2, and more recently on Mars Global Surveyor (MGS) and Mars Express (MEX). In addition to the radio occultation experiment, MEX also carried Mars Advanced Radar for the Subsurface and Ionosphere Sounding (MARSIS) experiment which provided electron density profiles well above the main ionospheric peak. The atmosphere of Mars was measured directly by the neutral mass spectrometer onboard Viking 1 and 2 Landers. Later, an accelerometer and radio occultation experiment on MGS provided large data sets of atmospheric density at various locations in the upper and lower atmospheres of Mars, respectively. In this paper we review results of these upper and lower atmospheric/ionospheric measurements. Results of these measurements have been compared with theoretical models by several workers; therefore, we also review various atmospheric and ionospheric models of Mars.  相似文献   

3.
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (~1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10?7 S?m?1 (for poorly conducting rocks) to 10?2 S?m?1 (for clay or wet limestone), with a mean value of 3.2 S?m?1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ~10?14 S?m?1 just above the surface to 10?7 S?m?1 in the ionosphere at ~80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ~1 pA m?2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (~+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ~130 V?m?1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.  相似文献   

4.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The Near-Earth Plasma Environment   总被引:1,自引:0,他引:1  
An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth’s plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.  相似文献   

6.
This review covers various aspects of the impulsive coupling in the ULF frequency range between atmospheric discharge processes and upper ionosphere. Characteristic feature of the upper ionosphere is the occurrence of the ionospheric Alfven resonator (IAR) and MHD waveguide, which can trap the electromagnetic wave energy in the range from fractions of Hz to few Hz. Induction magnetometer observations at mid-latitude stations are considered as an example of a transient ULF response to the regional and global lightning activity. For many events, besides the main impulse produced by a lightning discharge, a secondary impulse delayed about 1 sec was observed. These secondary echo-impulses are probably caused by the partial reflection of wave energy of the initial lightning pulse from the upper IAR boundary in the topside ionosphere. The multi-band spectral resonant structure (SRS) can be formed owing to the occurrence of paired pulses in analyzed time series. The statistical superposed epoch method indeed has revealed a dominance of two-pulse structure in the magnetic field background during the periods of the SRS occurrence. The numerical modeling shows that during the lightning discharge a coupled wave system comprising IAR and MHD waveguide is excited. In the lightning proximity (about few hundred km) the amplitudes of radial component is 1–2 orders less than those of the azimuthal component, and only the lowest IAR harmonics are revealed in the radial magnetic component. At distances ~103?km the spectral power densities of both components are comparable, and the SRS is more pronounced. The problems and further prospects of the study of the impulsive magnetosphere–ionosphere–atmosphere coupling via transient processes during thunderstorms are discussed.  相似文献   

7.
Ionospheric Storms — A Review   总被引:2,自引:0,他引:2  
Buonsanto  M.J. 《Space Science Reviews》1999,88(3-4):563-601
In this paper, our current understanding and recent advances in the study of ionospheric storms is reviewed, with emphasis on the F2-region. Ionospheric storms represent an extreme form of space weather with important effects on ground- and space-based technological systems. These phenomena are driven by highly variable solar and magnetospheric energy inputs to the Earth's upper atmosphere, which continue to provide a major difficulty for attempts now being made to simulate the detailed storm response of the coupled neutral and ionized upper atmospheric constituents using increasingly sophisticated global first principle physical models. Several major programs for coordinated theoretical and experimental study of these storms are now underway. These are beginning to bear fruit in the form of improved physical understanding and prediction of ionospheric storm effects at high, middle, and low latitude. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Heavy ions in the magnetosphere   总被引:2,自引:0,他引:2  
For purposes of this review heavy ions include all species of ions having a mass per unit charge of 2 AMU or greater. The discussion is limited primarily to ions in the energy range between 100 eV and 100 keV. Prior to the discovery in 1972 of large fluxes of energetic O+ ions precipitating into the auroral zone during geomagnetic storms, the only reported magnetosphere ion species observed in this energy range were helium and hydrogen. More recently O+ and He+ have been identified as significant components of the storm time ring current, suggesting that an ionosphere source may be involved in the generation of the fluxes responsible for this current. Mass spectrometer measurements on board the S3-3 satellite have shown that ionospheric ions in the auroral zone are frequently accelerated upward along geomagnetic field lines to several keV energy in the altitude region from 5000 km to greater than 8000 km. These observations also show evidence for acceleration perpendicular to the magnetic field and thus cannot be explained by a parallel electric field alone. This auroral acceleration region is most likely the source for the magnetospheric heavy ions of ionospheric origin, but further acceleration would probably be required to bring them to characteristic ring current energies. Recent observations from the GEOS-1 spacecraft combined with earlier results suggest comparable contributions to the hot magnetopheric plasma from the solar wind and the ionosphere.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

9.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

10.
This review will not merely be a précis of the literature in this field though a partial survey is attempted. A critical stand will be taken and a point of view put forward. Experiments to test this point of view and others will be suggested. Several new ideas are introduced.Two broad conditions of the magnetosphere are discussed, the quiet and the disturbed. During the quiet condition, the polar cap F region either glows red or is filled with a family of red auroral arcs parallel roughly to L-contours. Auroras near the auroral zone have an increasing amount of green (5577) coloration. The ionospheric F region exists even in winter over the polar caps despite the absence of solar ionizing radiation or obvious corpuscular bombardment. The red polar glow and the maintenance of the quiet polar winter F region are suggested to be accounted for by the cooling of plasma in the geomagnetic tail. These phenomena consume less than 0.01 of the energy and flux of the solar wind impinging on the magnetosphere. The relevance of dynamo theory to this quiet condition is discussed.During the disturbed condition, many phenomena such as polar magnetic substorms, auroral substorms, the sudden appearance of islands of energetic particles in the magnetosphere, and the rapid acceleration of auroral particles appear to call for the operation of an instability deep in the magnetosphere.The energetics of various facets of geomagnetic disturbance are discussed, and joule dissipation of ionospheric current is found to be a major sink of energy during storms. This causes significant heating of the ionosphere particularly at the site of auroral electrojets. Corpuscular bombardment may consume as much energy, but its heating effect is likely to be less.The stable auroral red arc (SAR-arc) observed equatorwards of normal active aurora during magnetic storms is a major sink of energy of a magnetospheric ring current. It is contended that the ring current generally consists of particles of energy of less than a few keV. It is suggested that the ring current is caused by the irreversible pumping and energisation of plasma from the outer to the inner magnetosphere. This pumping is achieved by the random electrostatic fields associated with the noisy component of geomagnetic disturbance. The SAR-arc must be a major feature of ring current theory.The consumption of energy in polar magnetic and auroral substorms, during a complete storm, is tentatively concluded to be far greater than that of the ring current. The ring current is considered to be a byproduct of magnetic disturbance on higher L-shells.The main phase of a storm should be considered, in storm analysis, as a separate entity from the initial phase, for physically they bear a tenuous and unpredictable relationship to one another. A new system of analysis is proposed in which the onset of geomagnetic noise rather than sudden commencement is taken as the origin of time, both for magnetic and ionospheric storms. This will enable analysis of storms with both gradual and sudden commencements to be made on a common basis.No reliable evidence is found to support the contention that magnetic storms are caused dominantly by neutral H-atoms ejected from the sun. In fact much evidence can be amassed to deny this hypothesis.  相似文献   

11.
From the analysis of the United States Navy navigation satellite system (NNSS) positioning data of about 10000 passes, it is clearly found that polar ionospheric disturbance affects the positioning. The positioning error increases with increasing geomagnetic disturbance level (local K-index), and the pass number of position fixes decreases by one or two per day when the K-index is large. These effects may arise from the spatial gradients of electron density and/or the radio wave scattering due to well-developed ionospheric irregularities inherent to the disturbed auroral ionosphere  相似文献   

12.
The low latitude ionosphere is strongly affected by several highly variable electrodynamic processes. Over the last two decades ground-based and satellite measurements and global numerical models have been extensively used to study the longitude-dependent climatology of low latitude electric fields and currents. These electrodynamic processes and their ionospheric effects exhibit large ranges of temporal and spatial variations during both geomagnetic quiet and disturbed conditions. Numerous recent studies have investigated the short term response of equatorial electric fields and currents to lower atmospheric transport processes and solar wind-magnetosphere driving mechanisms. This includes the large electric field and current perturbations associated with arctic sudden stratospheric warming events during geomagnetic quiet times and highly variable storm time prompt penetration and ionospheric disturbance dynamo effects. In this review, we initially describe recent experimental and numerical modeling results of the global climatology and short term variability of quiet time low latitude electrodynamic plasma drifts. Then, we examine the present understanding of equatorial electric field and current perturbation fields during periods of enhanced geomagnetic activity.  相似文献   

13.
Various reports of ionospheric responses during the August 1972 storm events are reviewed with respect to the phenomena in three major world sectors, N-S America, Afro-Europe, and Austro-Asia, in order to have a global picture. Emphasized highlights are (1) extensive investigation of the sudden increase of the total electron content estimated from Faraday-rotation measurements of satellite signals; (2) a dramatic upward surge above 300 km altitude, soon after a flare, measured by the Millstone Hill incoherent scatter radar; (3) electron density profiles, electric fields and conductivities, and neutral winds, at the time of the geomagnetic storm sudden commencement and during the succeeding storms, measured by the Chatanika incoherent scatter radar; and, (4) approximately 2.5-h oscillatory F2 density variations in Eastern Asia during the F2 storm main phase. To show temporal variations of the latitudinal distributions of storm-time F2 electron densities, in three longitudinal sectors separated about 60° longitude each, newly investigated results of the F2 hourly data at 35 stations in the Asia-Australia-Pacific sector are then exhibited. Finally, current theories or at least theoretical ideas of ionospheric storm mechanisms are briefly introduced, and a few remarks on the August events in the light of those theories are presented.  相似文献   

14.
Our knowledge of the interplanetary medium is outlined and its frictionless interaction with the geomagnetic cavity, first discussed by Chapman and Ferraro, is described. An important feature of this interaction is the interplanetary field which is compressed and may possibly lead to the formation of a shock wave.The possibility of frictional interaction between the solar wind and the cavity is discussed; an effect which appears to cause friction is the instability of interpenetrating ion-electron streams. This effect will also cause strong heating and trapping of ions and the generation of electromagnetic waves.The theory of propagation of geomagnetic disturbances in the magnetosphere and ionosphere is reviewed, first in general terms and than for some of the various components of a geomagnetic storm.Sea-level disturbances are divided into stormtime (Dst) and other (DS) components and also into different phases and the experimental data is reviewed. Theories of Dst, including the ringcurrent theory and magnetic tail theory are discussed and compared. Attempts to explain the complex DS field comprise the magnetospheric dynamo theory and the asymmetrical ring-current theory; these are compared in the light of experimental evidence.Motions of plasma and field lines in the magnetosphere are discussed in general terms: there are motions which deform the field and there are interchange motions. The former are opposed by Earth currents; the latter are not. The two types of motion are coupled through ionospheric Hall conductivity. Theories of the DS field in terms of the two types of motion are described; in particular motions caused by frictional interaction with the solar wind are discussed. These motions cause a helical twist in the field lines which propagates into the polar ionosphere as a hydromagnetic wave. In the ionosphere the motions of the field lines drive currents (moving-field dynamo) which cause the DS field.Drifts of neutral ionization in the lower ionosphere lead to localized accumulations which play a vital part in storm and auroral theory: they cause polarization fields which change the DS current system; they react on the magnetospheric motions to cause particle acceleration and precipitation.Auroral morphology and theories are briefly reviewed; the solar wind friction theory, although far from complete may provide a start. Further development should take the form of determining ionospheric drifts, polarization electric fields and consequent magnetospheric effects.A brief discussion is given of some associated effects: growth and decay of belts of geomagnetically trapped corpuscules; increase in ionospheric absorption of radio waves and lower-level X-ray production, ionospheric storm and high-latitude irregularities, micropulsations, VLF and ELF radio emissions from the magnetosphere, atmospheric heating and wave generation.  相似文献   

15.
16.
In this paper some theories and experimental data on the electric fields and currents in the ionosphere are reviewed. Electric fields originating in the polarization of the ionosphere as well as in local irregularities are considered. Special attention is paid to field-aligned currents as a regulator of the intensity and configuration of the ionospheric polarization field, the anomalous resistivity being one of the most important characteristics of the magnetospheric plasma. Present-day models of the magnetosphere and corresponding electric field generation mechanisms are discussed. Various models of the DP1 current system are considered and the main characteristics that allow us to distinguish between them are listed. Experimental data on the ionospheric electric field are considered; a modified model of Silsbee and Vestine is shown to fit these data reasonably well.  相似文献   

17.
There are several external sources of ionospheric forcing, including these are solar wind-magnetospheric processes and lower atmospheric winds and waves. In this work we review the observed ion-neutral coupling effects at equatorial and low latitudes during large meteorological events called sudden stratospheric warming (SSW). Research in this direction has been accelerated in recent years mainly due to: (1) extensive observing campaigns, and (2) solar minimum conditions. The former has been instrumental to capture the events before, during, and after the peak SSW temperatures and wind perturbations. The latter has permitted a reduced forcing contribution from solar wind-magnetospheric processes. The main ionospheric effects are clearly observed in the zonal electric fields (or vertical E×B drifts), total electron content, and electron and neutral densities. We include results from different ground- and satellite-based observations, covering different longitudes and years. We also present and discuss the modeling efforts that support most of the observations. Given that SSW can be forecasted with a few days in advance, there is potential for using the connection with the ionosphere for forecasting the occurrence and evolution of electrodynamic perturbations at low latitudes, and sometimes also mid latitudes, during arctic winter warmings.  相似文献   

18.
Current knowledge about the solar radiation and absorption and ionization cross sections of atmospheric gases is reviewed. Next the main observed features of ionospheric layers are summarized. Using CIRA 1965 model atmospheres the heights of the peak of the ionization rate are calculated for a number of solar emission lines and it is made clear which of these lines are responsible for the formation of E and F1 layers. The mechanism of electron removal in the F and upper E regions as well as in the lower regions is considered, and the mechanism of formation and some behaviours of each ionospheric layer is discussed. In particular, the equatorial F2 layer is briefly considered. Discrepancies are pointed out between the values of the recombination coefficient and the rate constant for ion-atom interchange reaction obtained from ionospheric observations and from laboratory experiments. Inconsistency of the values of the intensity of solar radiation measured by rocket techniques and inferred from ionospheric considerations is also noted. Some evidence is presented suggesting that corpuscular radiation may be responsible for part of the ionization in the ionosphere even in temperate latitudes.  相似文献   

19.
This article reviews our knowledge of long-term changes and trends in the upper atmosphere and ionosphere. These changes are part of complex and comprehensive pattern of long-term trends in the Earth’s atmosphere. They also have practical impact. For example, decreasing thermospheric density causes the lifetime of orbiting space debris to increase, which is becoming a significant threat to important satellite technologies. Since the first paper on upper atmosphere trends was published in 1989, our knowledge has progressed considerably. Anthropogenic emissions of greenhouse gases affect the whole atmosphere, not only the troposphere. They cause warming in the troposphere but cooling in the upper atmosphere. Greenhouse gases such as carbon dioxide are not the only driver of long-term changes and trends in the upper atmosphere and ionosphere. Anthropogenic changes of stratospheric ozone, long-term changes of geomagnetic and solar activity, and other drivers play a role as well, although greenhouse gases appear to be the main driver of long-term trends. This makes the pattern of trends more complex and variable. A?consistent, although incomplete, scenario of trends in the upper atmosphere and ionosphere is presented. Trends in F2-region ionosphere parameters, in mesosphere-lower thermosphere dynamics, and in noctilucent or polar mesospheric clouds, are discussed in more detail. Advances in observational and theoretical analysis have explained some previous discrepancies in this global trend scenario. An important role in trend investigations is played by model simulations, which facilitate understanding of the mechanisms behind the observed trends.  相似文献   

20.
This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号