首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.  相似文献   

2.
In radars that achieve a high subclutter visibility by coherent processing over several pulses, a serious problem appears in the form of blind Dopplers, or ?speeds,? at which target detection is impossible. Of the possible methods of eliminating these blind speeds, the most basic one that is employed when the performance requirements are high involves the use of several PRF's. These PRF's are chosen so that coverage is obtained at any Doppler with at least one PRF. The problem faced by the radar designer is to select the set of PRF's and the pulse numbers for each PRF so that the search frame time is minimized. This paper evolves a systematic method for the design of the blind-speed elimination scheme. A formalized approach is offered that shows the possible combinations of wavelength, PRF, and pulse number and the tradeoffs involved, without introducing the confusion ordinarily associated with multiparameter choices.  相似文献   

3.
Radar target probing and measurement are challenging tasks for Radio Frequency Simulation (RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving (ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.  相似文献   

4.
Moving clocks and clocks in a gravitational field slow down, not due to the effects of special relativity nor to the space-time curvature of general relativity, but due only to the principle of equivalence and the conservation of energy. However, some might argue that there has been a further “test” of the effect of gravity on time, namely, the measurement of the time-delay of a round-trip, solar-grazing radar beacon performed by Shapiro in the 1960s. In this test, Shapiro bounced a radar pulse off Mars at superior conjunction (a feat in itself for the time), and compared the measured round-trip travel time of this pulse with the expected round-trip time of a signal traveling at c for the entire trip, as determined from highly accurate planetary ephemerides. Shapiro had predicted this time-delay long before being technologically able to make such a measurement. While general relativity can be used to correctly obtain the magnitude of this delay, it is not the only explanation. As earlier with the analysis of clocks in motion and of clocks in a gravitational field, this paper derives the same result without invoking the space-time curvature of general relativity  相似文献   

5.
江军  张本栋  王凯  李文源  张潮海 《航空学报》2020,41(9):323889-323889
为满足多电飞机(MEA)的大功率用电需求,系统工作电压需要进一步提高,而较高电压会增加相关部件的绝缘失效风险。面向多电飞机特定工作场景和参数,搭建了模拟飞机电作动器中的绕组间绝缘故障测试平台,开展了1 kHz范围内的局部放电(PD)大量重复实验,研究了特定电压幅值、正弦波和方波脉冲波形下局部放电幅值、放电重复率和放电相位等统计特征,并计算评估了不同频率值下多电飞机中的局部放电行为。实验结果表明:在设定频域范围内,方波脉冲下的起始放电电压(PDIV)都低于正弦,方波脉冲波形对绝缘影响更大;随着频率升高,放电幅值逐渐降低,但放电重复率几乎呈线性增长;放电时刻集中于上升沿/下降沿末端。以50 Hz作为对比基准频率,1 kHz时的放电幅值降低80%,而放电重复率增加11.92倍,较高频率下多次累积的小幅值击穿成为威胁绝缘失效的主要原因。计算分析认为高频下空间电荷场强变化导致的放电延迟时间减少和周期数目增加分别导致局部放电脉冲幅值降低和放电重复率增加。本实验结果有助于针对多电飞机电气系统和相关装备开展针对性绝缘测试和评估,并有望为多电飞机向大功率高电压方向的设计提供参考和借鉴。  相似文献   

6.
有源相控阵中场测量中的空间误差研究   总被引:1,自引:0,他引:1  
由于中场监测设备量少,且测量效率高,所以是有源相控阵雷达阵面测量的重要方法之一,在工程中得到了广泛应用。其系统误差包括监测方法误差和测量设备误差,其中测量方法误差非常关键,而测量设备误差与所采用的具体设备有关。在中场测量中,探头的位置偏移导致的空间误差是其特有的测量方法误差。本文对空间误差进行了理论分析,并以x波段有源相控阵的中场测量为例,给出了空间误差的计算结果和实验结果。计算结果表明,空间幅度误差很小;空间相位误差与被测阵面口径、测量距离和探头位置偏移有关。实验结果进一步验证了这种计算结果。分析结果为中场测量的实施提供了参考,具有一定的工程意义。  相似文献   

7.
Test packages written for built-in test (BIT) and mobile automatic test equipment (ATE) systems for the forward support of electronic and thermal imaging equipment used by the British Army are currently scrutinized and subjected to objective tests by test package evaluation and acceptance teams (TPEATs) before being accepted for field use. This is a time-consuming and costly exercise that can result in the rejection of unsuitable software. The result of such rejection on equipment logistics is for reaching, since the hardware will enter service without adequate maintenance support. In an attempt to address this problem a suite of programs aimed at assisting the verification and validation activities of the TPEAT at every stage of the software life cycle from requirements analysis through to testing and acceptance is being devised. The development of these tools is discussed  相似文献   

8.
One of the best known weakness of radar sensors in defense and security applications is the necessity to radiate a signal, which can be detected by the target, so being possible (easy in fact) that the target is alerted about the presence of a radar before the radar is alerted about the presence of a target. In this context, Low Probability of Interception (LPI) Radars try to use signals that are difficult to intercept and/or identify. Spread spectrum signals are strong candidates for this application, and systems using special frequency or polyphase modulation schemes are being exploited. Frequency hopping, however, has not received much attention. The typical LPI radar at this moment of the technology is a CW-LFM radar. The simplicity of the technology is its best point. Polyphase codes, on the other hand have the inherent advantage of high instantaneous bandwidth regardless of observation time. But the complexity of the hardware is also higher. FH signals have traditionally been considered of lower performance but higher complexity, due to the difficulties to compensate the individual dopplers for the individual range cells in the receiver. One important point is that an FH radar must be clearly distinguished from an agile frequency radar. In the latter, a pulsed signal is transmitted using different frequencies from pulse to pulse. In an FH radar the frequency changes must be during the pulse. In fact, in an LPI FH radar, a CW frequency hopped signal is used. A radar system concept is proposed in which it shows how these problems can be overcome in a tracking application. Also, the signal format is analyzed under the scope of future decade digital interceptors, showing that, in fact, this kind of signal exhibits improvement in some performances and requires a hardware that is only slightly more complex than that needed for CW-LFM systems  相似文献   

9.
A flexible test bed radar architecture is described which includes an integrated RF electronics package that can support multiple radar applications, including surveillance, fire control, target acquisition, and tracking. This type of architecture can significantly reduce the cost, power, size, and weight of electronics on future weapon delivery platforms. The Army Research Laboratory (ARL) is developing technology to support multimode radar requirements. These requirements include the detection and location of moving or stationary low radar cross section targets in heavy ground clutter and the classification and/or recognition of these targets. We address these requirements with commercial-off-the-shelf (COTS) products and the integration of several enabling technologies. The test bed radar includes a direct digital synthesizer (DDS) for frequency-diverse waveform generation, a flexible wideband transceiver for bandwidth extension and frequency translation, and an open architecture signal processor with embedded wideband analog-to-digital converters for real-time acquisition and processing. Efficient signal processing algorithms have been developed to demonstrate multimode radar capability. This paper discusses the various subassemblies, algorithm efficiency, and field experiment results  相似文献   

10.
The ELDORA/ASTRAIA airborne Doppler weather radar was recently placed in service by US and French atmospheric sciences research laboratories. The ELDORA/ASTRAIA radar is designed to provide high resolution measurements of the air motion and rainfall characteristics of atmospheric storms which are too large, remote or fast-moving to be adequately observed by ground-based radars. This paper discusses the measurement requirements and the design goals of the radar and presents sample measurements from a recent weather research field program  相似文献   

11.
备件携行量研究方法综述   总被引:2,自引:0,他引:2  
备件是舰载机在海上执行维修保障任务的重要资源,而备件数量的配置受成本、储存空间与使用可用度等因素的影响。针对出航准备阶段备件携行量的确定问题,分析和总结了当前备件数量配置方法的研究现状,重点对基于间断型历史数据的备件需求预测法、先维修后备件的序贯优化法以及维修与备件的联合优化法进行了综述,并从成本、舰船储存空间与使用可用度等角度分析了3种方法的特点与适用场合,认为联合优化是备件携行量的最佳计算方法。结合已有的研究基础,对备件携行量联合优化方法未来的研究重点与趋势进行了展望。  相似文献   

12.
传统测风方法基于空速管等测风设备实现精确的实时测风。考虑降低成本,有些飞行器上没有安装空速管等测风设备。针对这种情况,文章提出一种通过航路转弯机动飞行实现测风的方法,即假设大气风场短时间内不变,基于速度三角形原理在转弯前、后的2个航路上分别构建2个方程,通过联解2个方程得到大气风场信息。采用蒙特–卡洛法进行仿真,结果表明该方法简单有效、具有较高精度,为大气风场实时测量提供了一条新的思路。  相似文献   

13.
14.
15.
基于特征的蒙皮镜像铣加工残区刀轨优化方法   总被引:1,自引:1,他引:0  
镜像铣加工装备及其加工工艺是蒙皮零件加工的有效手段,其特殊工艺对加工刀轨提出了等步距、无交叉、无抬刀且无残留等特殊要求。针对蒙皮零件加工特征的复杂形状,在满足等步距、无抬刀、无交叉的条件下对加工残留区域进行刀轨优化是一个难题。为解决以上难题,本文提出了一种基于特征的蒙皮镜像铣加工残区刀轨优化方法。该方法基于特征将蒙皮零件的工艺信息与几何信息相关联,自动提取加工特征的加工面及其对应的刀轨,将刀轨分割成若干段子刀轨,并构建子加工区域,再利用布尔并运算得到最终可加工区域。然后对加工面区域与最终可加工区域求布尔差识别出加工残留区域,并根据加工残区位置自适应生成满足蒙皮镜像铣特殊要求的优化刀轨。以典型复杂蒙皮零件验证本文提出的方法,结果表明,基于特征的蒙皮镜像铣加工残区刀轨优化方法可自动识别加工残区,并生成满足蒙皮镜像铣特殊要求的加工残区优化刀轨,为提高蒙皮零件数控编程效率提供技术支撑。  相似文献   

16.
Radio interference generated in a helicopter-borne pulse Doppler radar system due to rotating blades is analyzed for the case that blades are located in the far field region of the radar antenna. A first-order estimate of the blade interference power spectrum is obtained as a function of antenna depression angle and radar (helicopter) altitude and speed. Numerical calculations show that blade interference is very weak compared with the direct ground clutter. It extends, however, into the clutter-free region which causes false alarms and degrades the radar performance.  相似文献   

17.
跨声速风洞全模颤振试验技术   总被引:2,自引:2,他引:0  
介绍了跨声速全模颤振试验的发展现状和存在的问题。探讨了全模颤振试验对风洞和支撑系统等试验设备的要求。对于风洞,主要从风洞洞体和流场等方面分析了进行颤振试验所需要具备的性能,并以中国空气动力研究与发展中心的2.4m跨声速风洞为例,介绍了进行颤振试验必须要采取的控制措施。对于支撑系统,则从模型运动自由度、支撑系统稳定性和支撑系统频率等方面的要求,阐述了设计支撑系统的困难,并简要分析了目前国内外发展的多种全模颤振支撑系统的结构原理及其优缺点。然后介绍了系统安全的保证措施,包括支撑系统稳定性分析、风洞紧急停车控制系统和模型保护装置等。最后根据飞行器发展的需求,探讨了今后需要完善和发展的几个主要问题。  相似文献   

18.
In modern secondary surveillance radar (SSR) the monopulse technique is currently introduced for the measurement of the azimuth of the targets. The monopulse technique is based on a suitable processing of signals received by a multiple antenna. In SSR the signals are generated by a transponder on the aircraft as replies to interrogations from ground equipment, and consist of trains of pulses. The monopulse measurements can be carried out on the basis of a single pulse from each train, so that it provides a great number of azimuth estimates. Many monopulse measurement devices exist, corresponding to different processing techniques. From the point of view of accuracy and precision, their behaviors differ with respect to the sources of errors, both internal (noise and imperfect calibrations) and external (interference and propagation effects). The four main types of monopulse receivers are analyzed here with respect to the effects of the internal error sources on the resulting measurement accuracy. After an introductory discussion of the performances of the receivers, a detailed analysis is carried out on the basis of a general mathematical model. The results are given in an analytical form and in some comprehensive diagrams.  相似文献   

19.
为满足雷达装备不断增长的保障需求,研制了一套便携式雷达装备检测系统,该检测系统的核心组成部分是超宽带雷达信号模拟器。模拟器采用低频段基带信号与高频段本振信号2次混频来模拟产生0.05~16 GHz范围内多种体制的雷达信号,最后完成了电路实现,经过信号测试各项指标均达到设计要求。  相似文献   

20.
Side Detection System (SDS) based on radar technology for automotive applications is introduced. The functional requirements of such a system are described and the resulting safety enhancement benefits are summarized. Also, the nature of the radar environment for the side zone application is reviewed in qualitative terms. Minimizing cost is a necessary system design driver, and presents a considerable challenge for radar designs in all but the most primitive capability cases. A cost effective design approach and radar system architecture which solves the side zone application problem of separating potentially hazardous target returns from exorbitant amounts of clutter are discussed in some detail. This design has been in road test for several months, and has achieved enthusiastic customer acceptance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号